Edge Detection

Dr. Mongkol Ekpanyapong

Roadmap

Introduction to image analysis (computer vision)

— Its connection with psychology and neuroscience
— Why is image analysis difficult?

Theory of edge detection

— Gradient operator

— Advanced operators

Applications

— Road/sign detection in intelligent driving systems
— Pupil detection in iris recognition systems

Computer Vision: the Grand Challen i

« Teach a computer to see is nontrivial at all

« Unlike binary images, grayscale/color images
acquired by the sensor are often easy to
understand by human being but difficult for a
machine or a robot

* There are lots of interesting problems in the field
of computer vision (image analysis)

— Image segmentation, image understanding,
face detection/recognition, object tracking ...

Top-down school Bottom-up school
Ixels
| see a human body P l
l components (such as
| expect to see a human face edges, lines etc.)
| expect to see two eyes and a nose objects

Two hypothesis and nobody knows the answer yet!

v

BIRINTEN

> s
B
o
P~

| Person A:

S AT | see an old man with a fancy
. S earring and a strange hand

| Person B:

| see two people on the street
and a dog lying beside

If you try really hard, you will be able
: : i a=es | to locate at least eight different faces
R s s E R RR e e s el | from this image

A A,
: .

Multistability (or Multistable Perception)=

Application: Face Detection

! : 3 LA | o =
4 A v - - B .
[77 AN ; (! " " v
f et » 4) -«‘ N
{ ? - | Y% &
St & o -
; ¥ - =
| o
v
= E
(’-

You are strongly encouraged to try the interactive demo out yourself

http://vasc.ri.cmu.edu/demos/faceindex/

10

Image Segmentation

« Segmentation subdivides an image Iinto its
constituent regions or objects

 Some examples are point, line, and edge
detection

Point Detection

* Using the mask below, we say that an
Isolated point has been detected at the
location on which the mark is centered Iif
IR > T when T Is non negative threshold

FIGURE 11.1
A mask for point
detection.

Matlab Function

f=imread('sphere.tif");
w=[-1-1-1;-18-1;-1-1-1];
g = abs(imfilter(double(f),w)) ;
g =g >=15;

iImshow(f);

figure, imshow(qg)

Result

ab

FIGURE 11.2

(a) Gray-scale
image with a
nearly invisible
1solated black
point in the north-
east quadrant of
the sphere.

(b) Image
showing the
detected point.
(The point was
enlarged to make
it easier to see.)

Edge Detection

 Why detect edge?

Edges characterize object boundaries and are
useful features for segmentation, registration
and object identification in scenes.

* What 1s edge (to human vision system)?

No rigorous definition exists

Intuitively, edge corresponds to singularities in the image
(1.e. where pixel value experiences abrupt change)

15

Line Detection

* Let Ry, R,, R3, and R, denote the responses of the
masks below

e Suppose that the four masks are run individually
through an image, if |R;| > [R;| then the pointis
more likely associated with a line in the direction |

abcd

FIGURE 11.3
Line detector
masks. 2 2 2 -1 2 -1 -1 2 -1 —1 2 -1

-1 -1 -1 2 -1 —1 -1 2 -1 -1 -1 2

-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1

Horzontal +45° Vertical —45¢

Example

ab

cd

e f

FIGURE 11.4
{a) Image of a
wire-bond

template.

(b} Result of
processing with
the +45°
detector in

Fig. 11.3.

(c) Zoomed view
of the top, left
region of (b).

(d) Zoomed view
of the bottom, right
section of (b).

(e) Absolute
value of (b).

() All points (in
white) whose
values satisfied
the condition
g>=T,where gis
the image in (&).
{The points in (f)
were enlarged to
make them easier
to see.)

Edge detection Is a hard image
processing problem

* Most edge detection solutions exhibit limited
performance in the presence of images
containing real-world scenes.

 Itis common to precede the edge detection
stage with pre-processing operations such as
noise reduction and illumination correction

* Edge model
— Step edge

— Ramp edge

— Roof edge

— |
T

Edge Detection

abc

FIGURE 10.8

From left to right,
models (ideal
representations) of
a step, a ramp, and
aroof edge, and
their corresponding
intensity profiles.

Basic concepts

- Edge: a boundary between two image regions having
distinct characteristics according to some feature (e.g.,

gray level, color, or texture).
 In grayscale 2D images: a sharp variation of the intensity
function across a portion of the image.

Model of an ideal digital edge Model of a ramp digital edge

Gray level profile of a horizontal
line through the image line through the image

Gray level profile of a horizontal

Basic concepts

« Edge detection methods usually rely on calculations
of the first or second derivative along the intensity
profile.

— The magnitude of the first derivative can be used
to detect the presence of an edge at a certain
point in the image.

— The sign of second derivative can be used to
determine whether a pixel lies on the dark or
bright side of an edge.

— Moreover, the zero crossing between its positive
and negative peaks can be used to locate the
center of thick edges.

Basic concepts

 First and Sray ever

second
derivative

Basic concepts
B Tl i B

(a) (b)

* The - m))
i n fI u e n C e j: : \\ o o8
of noise ~ /

B0 r

Y
N,
\

!
oﬂ 100 200 300 400 SO0 0D YOO o 100 200 00 400 SO0 60D TOO o 100 200 00 400 SO0 60D TOO

Distance along profile Distance along profile Distance along profile

(@ @ (0
O

(2) (h) @

A
WF

{ 03
02 lr.l \l_\
J
J W 02
[o1 [
0 100 200 300 400 SO0 80D YOO o 100 200 300 400 SO0 00D TOO o 100 200 300 400 50D 0D YOO
Distance along profile Distance along profile Distance along profile

() (k) (1)

= M

lul

FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by
random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0
intensity levels, respectively. Second column: First-derivative images and intensity
profiles. Third column: Second-derivative images and intensity profiles.

e

Horizontal intensity
profile

First
derivative

Second
derivative

Zero crossing —/

ab

FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.

(b) Detail near
the edge, showing
a horizontal
intensity profile,
together with its
first and second
derivatives.

Basic concepts

* The process of edge detection consists
of three main steps:

— Noise reduction
— Detection of edge points
— Edge localization

* In MATLAB: edge

Gradient Operators

» Motivation: detect changes

change in the pixel value — large gradient

image .| Gradient » Thresholding —— edge
operator map
x(m,n) g(m,n) I(m,n)

1 |g(m,n)|>th
0 otherwise

I(m,n):{

MATLAB function: > help edge

27

Basic Edge Detection

* We know that we can find edge by using
first and second derivative

I_a)fr

= = 8x = ox
Vf = grad(f) [R} o,

_ay |

« The magnituae 1s M(x.y) = mag(Vf) = \/&% + &)

* The direction Is a(x, y) = tan"[?}

Gradient Vector

=

Gradient vector Grddient vector

nm

ldge|direction

Grey pixel = 0, and white pixel = 1, using 3x3 neighborhood
From the picture g, = -2 (downward direction)

gy =2
Magnitude = 22 and angle = 145 degree

s

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.
e Note that the edge is perpendicular to the direction of the gradient vector at the point
HE!E where the gradient is computed. Each square in the figure represents one pixel.

Gradient Operator

« Obtaining the gradient of an image
requires the partial derivative

gy = Y _ flx +1,y) = fix, y)

L3 HI
af(x, v)
g, = ——— = flx.y + 1) — flx,y)
ay

simplified version (no square root)

One Dimension Mark

* Only use to present conceptually

9x

Image Neighborhood

Iy s o
4 %5 an
&3 ™ Ly
Im:rgq: nﬂ_g;hhmhcu:h.]

Simple 3x3 mask

df
E==a={l1+In+39]—(1r+21+23}

d
Ey=;=[13+2f.+l'u)_(1|+34+E?]

* Prewitt operators:

—1 0

h-_l. = -1 0
-1 0

T 1 -1

hy, = 0 0
1

= First-order derivative edge detection®

Examples

+ threshold

37

1 1
1 0
0 -1
1 0
1 0

Compass Operators

0
-1

-1
—1
-1

-1

g(m. n) = max{| g, (m,n) [}

1 1 1
0 0 O
-1 -1 -1
ANV
RN
-1 -1 -1
0 0 O
1 1 1

0O 1 1
-1 0 1

-1 -1 0
-1 0 1
-1 0 1
-1 0 1
-1 -1 0
-1 0

0 1

38

Examples

Compass operator

39

Sobel Edge Detector

* The idea is to give more emphasis to on-
axis pixels

=[G+ G]m
= [z + 225+ 20) — (g + 25, + 23)

1
F (23 + 225 + 29) — (23 + 224 + 27) 2}

* Sobel operators:

h, =

—1 0
-2 0

()
=
O
D
e
(b,
o
D
@)
e
D
())
=
e
]
=
S
(D)
o
| -
D
O
-
@
-
N
=
LL

* Sobel operator

Vi .;,, .ﬁ:/ﬂ:r, ﬂf _r. /7, \ J,, ..
L

il

2-dimension mark

41 2 I3
da
2 | oz | b c
de
I g Z fg

Image neighborhood
FIGURE 10.14

% .
PR a0 : A3 3reg10nqof
an image (the z’s
o o o o0 5 are mtensity
values) and
various masks
1 2 1 -1 | 0 1 d
Sobel used to (;ompute
g = (27 + 225 + 2s) gy = (23 + 225 + 25) the gradient at
—(z + 25 +) — (2 + 22z + 29) the point labeled
Zs.
-1 | -1 | -1 -1 | 0 1
0 0 0 -1 | 0 1
1 1 1 -1 | 0 1
Prewitt
Ex= Iy + Zs + Ia) gy= (23 + 2 + Zo)
—Z3 + 2+ —(n+a+)
-1 | 0 0 | -1
0 1 1 0
Roberts

2-dimension mark

e | 0 e | 0

-1 -1 0 1
Prewitt

0 1 -2 -1

-1 0 -1 0

-2 -1 0 1

Sobel

ab
cd

FIGURE 10.15
Prewitt and Sobel
masks for
detecting diagonal
edges.

| Image

igina

O

FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
usinga 5 X 5
averaging filter
prior to edge
detection.

d) |9.l+]9yl

ab

cd

Eli

FIGURE 11.6

{a) Original
image. (b) Result
of function edge
using a vertical
Sobel mask with
the threshold
determined
automatically.
{c) Result using a
specified threshold.
{d) Result of
determining
both vertical and
horizontal edges
with a specified
threshold.

(e) Result of
computing edges
at —45% with
imfilter using
a specified mask
and a specified
threshold.

(f) Result of
computing edges
at +45" with
imfilter using
a specified mask
and a specified
threshold.

Second-order derivative edge detect

 Second-order derivative
(the Laplacian of an image):

, Prixy) P f(xy)
Vf(x,y) = " + ”

—£=fH+IJ}+HI—Lﬂ—EﬂLH

= flx,y + 1)+ flx,y — 1) — 2f(x, ¥)

i)

Vi=[flx+Ly)+flx—Ly)+flx,y+1) + flx,y = 1)] — 4f(x,y)

Second-order derivative edge detect

 Laplacian of an image:

0 1 0
1 -4 1
0 1 0

* The general version:

i3

]._I:I:'

(44

1 +

I_{l:'

1 T (¥
—4

1 + o

1_[1

1 + w

i

1_(t'
1_lil:'

1 + «

(14

1 +

1_I:I:'

1 + o

ab
cd

FIGURE 3.17

(a) Image of the
North Pole of the
moon.

(b) Laplacian
filtered image,
using uint8
format. (Because
uint8is an
unsigned type,
negative values in
the output were
clipped to (0.)

(c) Laplacian
filtered image
obtained using
floating point.
(d) Enhanced
result, obtained
by subtracting (c)
from (a).
(Original im-

age courtesy of
NASA.)

Laplacian Operators

» Gradient operator: first-order derivative
sensitive to abrupt change, but not slow change

! 2¢ A2
second-order derivative: V* f_a f a f
o2 (Laplacian opera)(or)
:O _—
PV local extreme in f~
* Discrete Laplacian operator
l'a l-a a | [0 1 O] 1 1 1]
—|1-a -4 1-a 1 -4 1 1 -8 1
1+a
a l-a a 0 1 0 1 1 1

- - - a=0 - a=0.5

52

Zero Crossings

|

Zero crossing

M/vm

. 1
Laplacian ‘ : edge
" Zero-crossing ——
operator map
g(m,n) I(m,n)

53

Examples

original image

Question: why is it so sensitive to noise (many false alarms)?
Answer: a sign flip from 0.01 to -0.01 is treated the same as from 100 to -100

o4

a)
b)
C)
d)
€)

f)

» Laplacian an

Z€Ir0-Cross

Input
Laplacian

Zero crossing
Input with noise
Laplacian

Zero crossing

®

int main(int argc, char** argv)

{
Mat src = imread("d:/image/cameraman2.tif', IMREAD_GRAYSCALE);
Mat dst, dst2;
Sobel(src, dst, -1, 1, 1);
Laplacian(src, dst2, -1);
I/l Show the results
namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
imshow(" ORIGINAL ", src);
namedWindow(" SOBEL ", WINDOW_AUTOSIZE);
imshow(" SOBEL ", dst);
namedWindow(" LAPLACIAN ", WINDOW_AUTOSIZE);
imshow(" LAPLACIAN ", dst2);
waitkey();

return O;

* Linear filtering

— Use a Gaussian filter to smooth out noise component
— Laplacian of Gaussian

« Spatially-adaptive (Nonlinear) processing

— Apply different detection strategies to smooth areas
(low-variance) and non-smooth areas (high-variance)
— Robust Laplacian edge detector

* Return single response to edges (not multiple edge
pixels)
— Hysteresis thresholding — Canny’s edge detector

57

* Problems with Laplacian:

— It generates “double edges’, I.e.,
positive and negative values for each
edge.

— It Is extremely sensitive to noise.

* In MATLAB:
h = fspecial('laplacian’,0);

J = edge (I, 'zerocross',t,h);

Second-order derivative edge detection

ESecond-order derivative edge detection™"

» Laplacian of Gaussian (LoG):

— Works by smoothing the image
with a Gaussian low-pass filter,
and then applying a Laplacian
edge detector to the result.

— The LoG filter can sometimes be
approximated by taking the
differences of two Gaussians of
different widths, in a method
known as Difference of
Gaussians (DoG).

Second-order derivative edge detect

» Laplacian of Gaussian (LoG) transfer function
(Mexican hat)

x10™*
BB L
20 | [- ..
104
25 | [.. ...
20 | [N U
5

i 1 1 i 1 i 1
0 0 0 5 10 15 20 25 30 35

(@ (b)

ESecond-order derivative edge detection

» Laplacian of Gaussian (LoG) transfer function
(2D cross-section of 3D plot) and mask
(kernel)

RN
O—\I\J_\O
RN
»

" R
= | N =
olo|L|Oo|O

ab

cd

e f

FIGURE 11.7

Left column:
Default results for
the Sobel, LoG,
and Canny edge
detectors. Right
column: Results
obtained
interactively to
bring out the
principal features
in the original
image of

Fig. 11.6(a), while
reducing
irrelevant detail.
The Canny edge
detector produced
the best result.

Laplacian of Gaussian

 Generalized Laplacian operator

h(m,n) =c[l1- (m’ J;nz)]exp(— m

Image — .
x(m,n)

Gaussian
LPF (o)

|

2 + n2)
o 20°
Laplacian edge
operator | map
g(m,n) I(m,n)

Pre-filtering: attenuate the noise sensitivity of the Laplacian

63

Examples

64

Robust Laplacian-based Edge Detector

estimate |52
local variance

image |, Laplacian| Zero ooqp |YES edge
operator crossing? point
lNo
lNo
not an
not an)
edge point

edge point

65

Examples

66

Canny Edge Detector

Canny edge approach is based on 3 objectives:
* Low error rate: all edges should be found

« Edge points should be well localized: the edges
located must be as close as possible to true
edges

« Single edge point response: should return only
one point for each true edge point

Flow-chart of Canny Edge Detector*
(J. Canny’1986)

Original image
I

Smoothing by Gaussian convolution

Differential operators along x and y axis

Non-maximum suppression
finds peaks In the image gradient

Hysteresis thresholding locates edge strings

'
Edge map

68

The Canny edge detector

The input image Is smoothed using a Gaussian low pass filter
(LPF), with a specified value of o©.

The local gradient (intensity and direction) is computed for each
point in the smoothed image.

The edge points at the output of step 2 result in wide ridges.
The algorithm thins those ridges, leaving only the pixels at the
top of each ridge (non-maximal suppression).

The ridge pixels are then thresholded using two thresholds, T,
and Ty;,,: ridge pixels with value greater than T, are
considered strong edge pixels; ridge pixels with values
between Ty, and T, are said to be weak pixels. This process
IS known asmhysteress thresholding.

The algorithm performs edge linking, aggregating weak pixels
that are 8-connected to the strong pixels.

In MATLAB: J = edge(I, 'canny', T, sigma);

Canny Edge Detector Example

after thresholding after thinning

70

http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny1.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/lena.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny2.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny3.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny4.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny5.gif

Compute Image gradient

—157.5° +157.5°
Edge normal
A
Pir | P2|P3 || P1|H2| P3
ps % | ps || pa |ps | Ps o
Edge Edge normal
P7 | B8 | Po||P7|Ps| P (gradient vector)
v “
Edge normal —22.5° +22.5°
1
X
—157.5° +157.5°

+45%dge
—112.5° +112.5°
~— Vertical edge

—67.5° +67.5°

—45%dge

+22.5°

Horizontal edge

ab
C

FIGURE 10.24

(a) Two possible
orientations of a
horizontal edge (in
gray)ina3 X 3
neighborhood.

(b) Range of values
(in gray) of «, the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a

3 X3
neighborhood.
Each edge
direction has two
ranges, shown in
corresponding
shades of gray.

ab
cild

FIGURE 10.25

(a) Original image
of size 834 > 1114
pixels, with
intensity values
scaled to the range
[0, 1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

ab

cd

e f

FIGURE 11.7

Left column:
Default results for
the Sobel, LoG,
and Canny edge
detectors. Right
column: Results
obtained
interactively to
bring out the
principal features
in the original
image of

Fig. 11.6(a), while
reducing
irrelevant detail.
The Canny edge
detector produced
the best result.

void CannyThreshold(int, void*){
blur(src, detected edges, Size(3, 3));

Canny(detected_edges, detected edges, lowThreshold, lowThreshold*ratio,
kernel_size);

dst = Scalar::all(0);
src.copyTo(dst, detected_edges);
imshow(window_name, dst);

}

int main(int argc, char** argv){
src = imread("d:/image/cameraman?2.tif', IMREAD GRAYSCALE);
dst.create(src.size(), src.type());
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

createTrackbar("Min Threshold:", window _name, &lowThreshold,
max_lowThreshold, CannyThreshold);

CannyThreshold(0, 0);
waitKey(0);
return O;

A
Tl

-y
L
) Wﬁ% o
G
=

G et o %%ﬁ%\ AMNQ&S@\@
o Wi Shon
o ESRACTT T
) LY

VI m

O Z \ ©
= y V
c S ow=S

T AT S STl
S
0 Wi@arrrcrrrT Lgeqneeaoaniany
(), S
h S

S1plliis

>|=imread("'ris.omp");
>c=edge(l, ‘canny’);
>[x,y]=find(c==1);

76

Goal of edge detection: to produce an image
containing only the edges of the original
iImage.

However, due to the many technical
challenges (noise, shadows, occlusion, etc,),
most edge detection algorithms will output an
Image containing fragmented edges.

Additional processing is needed to turn
fragmented edge segments into useful lines
and object boundaries.

Hough transform: a global method for edge
linking and boundary detection.

The Hough transform

« A mathematical method designed to find
lines in images.

— It can be used for linking the results of edge
detection, turning potentially sparse, broken,
or isolated edges into useful lines that
correspond to the actual edges in the image.

The Hough transform

Let (x,y) be the coordinates of a point in a binary image (containing
thresholded edge detection results).

The Hough transform stores in an accumulator array all pairs (a,b) that
satisfy the equation y = ax+ b. The (a,b) array is called the transform
array.

— Example:, the point (x,y) = (1,3) in the input image will result in the equation
b =-a + 3, which can be plotted as a line that represents all pairs (a,b) that
satisfy this equation.

>

-,
1 .
b o
a,
-
~,
*,

\\
by
-
——%—+— @
:
L] Ll . Ll
‘&
.

X Image Transform

The Hough transform

« Since each point in the image will map to a line in the transform
domain, repeating the process for other points will result in many
intersecting lines, one per point.

« The meaning of two or more lines intersecting in the transform domain
IS that the points to which they correspond are aligned in the image.

» The points with the greatest number of intersections in the transform
domain correspond to the longest lines in the image.

X Image VAN Transform

ELine Detection using Hough Transform=="

« Consider a line that passes through points
(X,y;) and (x;,y;)

* The line equation can be written as:
yi=ax;+tbandy, =ax+b

 \WWe can also write
b=-x;a+yandb=-xa+y,

ab

FIGURE 11.8

(a) xy-plane.
(b) Parameter
Space.

Concept

* The parameter-space lines corresponds to all
point (X,,Yy,) In the xy plane could be plotted.

* Lines in the plane could be found by identifying
points In parameter space where large number
of lines intersect (b=-x;a+y;)

 However, a (slope of the line) can approach
Infinity when we approach the vertical direction

Ope way around is to use: X cos0+ysin0=p

Sinusoidal curves

! ﬂ‘I'ﬂ u] I:I Hmﬂl
¥ o] ' ¢
p xjcosf + y;sinf = p Prin _
. _
. _
(X ¥y _
(x:.3:) P o)
' x;c0s8 + y:sinf = p fom —
x g P

abc

FIGURE 11.9 (a) Parameterization of lines in the xy-plane. (b} Sinusoidal curves in the p#-plane; the point of
intersection, (p’.8"), corresponds to the parameters of the line joining (x,, y,) and (x,. v,). (¢) Division of the
p-plane into accumulator cells

—100

=50

50

100

a
b

FIGURE 10.33

(a) Image of size
101 x 101 pixels,
containing five
points.

(b) Corresponding
parameter space.
(The pointsin (a)
were enlarged to
make them easier
to see.)

Hough Transform Peak Detection

— 800

—401)

400

SO0
—90

—fil)

—30

ab

FIGURE 11.11

(a) Hough
transform with
five peak
locations selected.
(b) Line segments
(in bold)
corresponding to
the Hough
transform peaks.

cde

FIGURE 10.34 (a) A 502 X 564 aerial image of an airport. (b) Edge image obtained using Canny’s algorithm.
(c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in
the image plane corresponding to the points highlighted by the boxes). (e) Lines superimposed on the
original image.

= M

OpenCV

void cv: :HoughLines(

cv::InputArray 1image,
cv::0utputArray lines,

double rho,

double theta,

int threshold,
double srn =0,
double stn =0

/!
/!
/!
/!
/!
/!
/!

Input single channel image

N-by-1 two-channel array

rho resolution (pixels)

theta resolution (radians)
Unnormalized accumulator threshold
rho refinement (for MHT)

theta refinement (for MHT)

The Hough transform

Coordinate conversion

— Describing lines using the equation y = ax
+ b (where a represents the gradient)
poses a problem, though, since vertical
lines have infinite gradient.

« This limitation can be circumvented by
using the normal representation of a

line, which consists of two parameters:

p and 6.

* In this new representation, vertical
lines will have 6 = 0.

|t is common to allow p to have
negative values, therefore restricting 6
to the range —90° < 0 < 90-.

'!.‘
e
o
-
0y

“
Y
M,
-
-
et
n,
-
Y
-
S
Y
a
N
bl
-
.,
.

p = xcosf + ysinf

3
-
*'

The Hough transform

« Under the new set of coordinates, the Hough transform
can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of
values for p and 6. Each element in this array is often
referred to as an accumulator cell.

2. For each pixel (x,y) in the image and for each chosen
value of 8, compute x cos 6 + y sin 6 and write the
result in the corresponding position (o, 6) in the
accumulator array.

3. The highest values in the (p, 0) array will correspond
to the most relevant lines in the image.

Int main(int argc, char** argv){
Mat src = imread("d:/image/checkerboard.png”,
IMREAD_ GRAYSCALE);

Mat dst, cdst;

Canny(src, dst, 50, 200, 3);

cvtColor(dst, cdst, CV_GRAY2BGR);
vector<Vec4i> lines;

HoughLinesP(dst, lines, 1, CV_PI /180, 50, 50, 10);
for (size_ti=0;i<lines.size(); i++){

Vecdi | = linesJi];
line(cdst, Point(l[0], I[1]), Point(l[2], I[3]), Scalar(0, 0, 255), 3,
CV_AA);

}

imshow("source", src);
imshow("detected lines", cdst);
waitKey(0);

6

14

The Hough transform

* In MATLAB:

— The IPT also includes two useful companion
functions for exploring and plotting the results
of Hough Transform calculations:

« houghpeaks: identifies the k most salient peaks in
the Hough transform results, where k is passed as
a parameter.

« houghlines: draws the lines associated with the
highest peaks on top of the original image.

The Hough transform

600

400

-200

200

400

600

(a)

(b)

y=ax+b y:ax2+ bx+c

MATLAB function: P = POLYFIT(X,Y,Nf

Polynomial of degree N

95

Analytical vs. Numerical
Solutions

f(X)=x*-3x+2

|
Analytical Two roots: % =1, X, =2
|) X" +2
Numerical f(X)=X"-3X+2=0=X= = g(X)
X.* + 2

successive substitution: |yx. =

I1+1 3

96

v

X
v

o

97

Radon/Hough Transform:

Mathematics*
/ . emi1r1 emax
p min
° Sample of
(aya) two lines
Two of an infinite number p max

of lines through point (x;,y)

p-0 Space

oo i
3(p,0) = / / 9(z,)8(p — zcos 8 — ysing) dz dy
=5 e

98

Generalizations of Hough Transform

(from 2D to N-D)

Analytic Form Parameters Equation

Line

Circle

Parabola

Ellipse

p, O

XOI YOI p

Xor Yor P> 0

XOI YOI al bl e

XC0SO+Yysinf=p

(xXo)2H(y-Y0)?=r?

(Y-Y0)2=4p(X-X,)

(x-Xo)?/a?+(y-yo)2/b?=1

99

Radon/Hough Transform: Image
Examples

FRadontranstormation

-0 -40 -20 1] 20 40 51|
Fho

Conclusion: Line detection can be implemented by point (peak)
detection in the Radom/Hough transform domain

100

Line Detection from Real-world
Images

Canny Edge

Gray Scale Image Edge Image (Canny)

101

102

= = = (o = = =
= = = = = -
& E - = = &

X-rays

Source

| Detectors

Computer

slice
VIEWS

Figure 10.1 An X-ray CT scanning system.

Reconstructed
cross-section

E Beyond Edge Detection

* Edges are among the earliest primitives
that have been studied in computer vision,
but their definition remains fuzzy

* There are many other primitives that can
be more rigorously defined or at least
conceptually easier to define

— Corner, line, circle, ellipse, square, triangle, ...

* The ultimate vision tasks involve the
detection of general objects

— Face, pedestrian, vehicle, mouth, eyes, door

104

wo Paradigms

« Model-based approaches

— Build an explicit model to characterize the objects we want
to detect

— Suitable for the class of simple objects for which good
models are relatively easy to find

— Examples: corner/line/circle detection

- Data-driven (machine learning) approaches

— Provide a training set (e.g., manually detected results) and
detector works like a black box

— Suitable for the class of complex objects for which good
models are NOT easy to find

— Examples: neural network, support vector machine

105

-
0
C
O

=
0
D
-

@y

