
Edge Detection

Dr. Mongkol Ekpanyapong

2

Roadmap
• Introduction to image analysis (computer vision)

– Its connection with psychology and neuroscience

– Why is image analysis difficult?

• Theory of edge detection

– Gradient operator

– Advanced operators

• Applications

– Road/sign detection in intelligent driving systems

– Pupil detection in iris recognition systems

3

Computer Vision: the Grand Challenge

• Teach a computer to see is nontrivial at all

• Unlike binary images, grayscale/color images

acquired by the sensor are often easy to

understand by human being but difficult for a

machine or a robot

• There are lots of interesting problems in the field

of computer vision (image analysis)

– Image segmentation, image understanding,

face detection/recognition, object tracking …

4

How does Human Vision System work?

Top-down school Bottom-up school

pixels

objects

components (such as

edges, lines etc.)

I see a human body

I expect to see a human face

I expect to see two eyes and a nose

Two hypothesis and nobody knows the answer yet!

5

An Amazing Image Example

Person A:

I see an old man with a fancy

earring and a strange hand

Person B:

I see two people on the street

and a dog lying beside

If you try really hard, you will be able

to locate at least eight different faces

from this image

6

Gestalt Theory (the Berlin School)

Emergence: the dog is perceived as a whole, all at once

7

Reification

8

Multistability (or Multistable Perception)

9

Invariance

10

Application: Face Detection

http://vasc.ri.cmu.edu/demos/faceindex/

You are strongly encouraged to try the interactive demo out yourself

Image Segmentation

• Segmentation subdivides an image into its

constituent regions or objects

• Some examples are point, line, and edge

detection

Point Detection

• Using the mask below, we say that an

isolated point has been detected at the

location on which the mark is centered if

|R|  T when T is non negative threshold

Matlab Function

f=imread('sphere.tif');

w = [-1 -1 -1 ; -1 8 -1; -1 -1 -1];

g = abs(imfilter(double(f),w)) ;

g = g >= 15;

imshow(f);

figure, imshow(g)

Result

15

Edge Detection

• Why detect edge?

Edges characterize object boundaries and are

useful features for segmentation, registration

and object identification in scenes.

• What is edge (to human vision system)?

Intuitively, edge corresponds to singularities in the image

(i.e. where pixel value experiences abrupt change)

No rigorous definition exists

Line Detection

• Let R1, R2, R3, and R4 denote the responses of the

masks below

• Suppose that the four masks are run individually

through an image, if |Ri| > |Rj| then the point is

more likely associated with a line in the direction i

Example

Edge detection is a hard image

processing problem

• Most edge detection solutions exhibit limited

performance in the presence of images

containing real-world scenes.

• It is common to precede the edge detection

stage with pre-processing operations such as

noise reduction and illumination correction

Edge Detection

• Edge model

– Step edge

– Ramp edge

– Roof edge

Basic concepts
• Edge: a boundary between two image regions having

distinct characteristics according to some feature (e.g.,
gray level, color, or texture).

• In grayscale 2D images: a sharp variation of the intensity
function across a portion of the image.

Basic concepts

• Edge detection methods usually rely on calculations
of the first or second derivative along the intensity
profile.

– The magnitude of the first derivative can be used
to detect the presence of an edge at a certain
point in the image.

– The sign of second derivative can be used to
determine whether a pixel lies on the dark or
bright side of an edge.

– Moreover, the zero crossing between its positive
and negative peaks can be used to locate the
center of thick edges.

Basic concepts

• First and

second

derivative

Basic concepts

• The

influence

of noise

Intensity profile of the edge with noise

Intensity profile of the edge

Basic concepts

• The process of edge detection consists

of three main steps:

– Noise reduction

– Detection of edge points

– Edge localization

• In MATLAB: edge

27

Gradient Operators

• Motivation: detect changes

change in the pixel value large gradient

Gradient

operator
image Thresholding

edge

map
x(m,n) g(m,n) I(m,n)



 


otherwise

thnmg
nmI

0

|),(|1
),(

MATLAB function: > help edge

Basic Edge Detection

• We know that we can find edge by using

first and second derivative

• The magnitude is

• The direction is

Gradient Vector

Grey pixel = 0, and white pixel = 1, using 3x3 neighborhood

From the picture gx = -2 (downward direction)

gy = 2

Magnitude = 22 and angle = 145 degree

Gradient Operator

• Obtaining the gradient of an image

requires the partial derivative

simplified version (no square root)

One Dimension Mark

• Only use to present conceptually

gx

gy

Image Neighborhood

Simple 3x3 mask

First-order derivative edge detection

• Prewitt operators:

First-order derivative edge detection

• Prewitt operator

36

Examples

horizontal edge vertical edge

Prewitt operator

original image

37

Effect of Thresholding Parameters

thresholdsmall large

38

Compass Operators























101

101

101















 

111

000

111

















 111

000

111























101

101

101





















110

101

011





















110

101

011





















011

101

110





















011

101

110

|}),({|max),(nmgnmg k
k



39

Examples

Compass operator

Sobel Edge Detector

• The idea is to give more emphasis to on-

axis pixels

First-order derivative edge detection

• Sobel operators:

First-order derivative edge detection

• Sobel operator

2-dimension mark

2-dimension mark

Original Image

Different Edge Detection

b) gx c) gy d) |gx|+|gy|

First-order derivative edge detection

• Sobel operator with threshold (example)

SECOND-ORDER DERIVATIVE EDGE DETECTION 315

Figure 14.7 Robinson compass masks.

(a) (b)

(c) (d)

Figure 14.8 Edge detection using Sobel operator and thresholding (the original image is the same

asFigure14.5(a)): (a) Threshold of 0; (b) Threshold of 0.05; (c) Threshold of 0.1138 (thebest value);

(d) Threshold of 0.2.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the f speci al

function (to generate the Laplacian 3⇥3 convolution mask) and the zer ocr oss option in

function edge as follows:

Second-order derivative edge detection

• Second-order derivative

(the Laplacian of an image):

Second-order derivative edge detection

• Laplacian of an image:

• The general version:

Example

52

Laplacian Operators

• Gradient operator: first-order derivative

sensitive to abrupt change, but not slow change

second-order derivative:
2

2

2

2
2

y

f

x

f
f











(Laplacian operator)

0
2

2






x

f
local extreme in f’



















010

141

010



















111

181

111

• Discrete Laplacian operator

a=0 a=0.5























aaa

aa

aaa

a
1

141

1

1

1

53

Zero Crossings

f f’ f’’

zero crossing

Laplacian

operator
image zero-crossing

edge

map
x(m,n) g(m,n) I(m,n)

54

Examples

zero-crossingsoriginal image

Question: why is it so sensitive to noise (many false alarms)?

Answer: a sign flip from 0.01 to -0.01 is treated the same as from 100 to -100

Second-order derivative edge detection

• Laplacian and

zero-cross
a) Input

b) Laplacian

c) Zero crossing

d) Input with noise

e) Laplacian

f) Zero crossing

int main(int argc, char** argv)

{

Mat src = imread("d:/image/cameraman2.tif", IMREAD_GRAYSCALE);

Mat dst, dst2;

Sobel(src, dst, -1, 1, 1);

Laplacian(src, dst2, -1);

// Show the results

namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);

imshow(" ORIGINAL ", src);

namedWindow(" SOBEL ", WINDOW_AUTOSIZE);

imshow(" SOBEL ", dst);

namedWindow(" LAPLACIAN ", WINDOW_AUTOSIZE);

imshow(" LAPLACIAN ", dst2);

waitKey();

return 0;

}

57

Ideas to Improve Robustness

• Linear filtering

– Use a Gaussian filter to smooth out noise component
 Laplacian of Gaussian

• Spatially-adaptive (Nonlinear) processing

– Apply different detection strategies to smooth areas
(low-variance) and non-smooth areas (high-variance)
 Robust Laplacian edge detector

• Return single response to edges (not multiple edge
pixels)

– Hysteresis thresholding  Canny’s edge detector

Second-order derivative edge detection

• Problems with Laplacian:

– It generates “double edges”, i.e.,

positive and negative values for each

edge.

– It is extremely sensitive to noise.

• In MATLAB:

h = fspecial('laplacian',0);

J = edge(I,'zerocross',t,h);

Second-order derivative edge detection

• Laplacian of Gaussian (LoG):

– Works by smoothing the image

with a Gaussian low-pass filter,

and then applying a Laplacian

edge detector to the result.

– The LoG filter can sometimes be

approximated by taking the

differences of two Gaussians of

different widths, in a method

known as Difference of

Gaussians (DoG).

Second-order derivative edge detection

• Laplacian of Gaussian (LoG) transfer function

(Mexican hat)
318 EDGE DETECTION

(a) (b)

(c) (d)

Figure14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of

(a).

2. Thelocal gradient (intensity anddirection) iscomputed for eachpoint in thesmoothed

image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins

those ridges, leaving only the pixels at the top of each ridge, in a process known as

non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tl ow and Thi gh : ridge

pixels with value greater than Thi gh are considered strong edge pixels; ridge pixels

with values between Tl ow and Thi gh are said to be weak pixels. This process is

known as hysteresis thresholding.

5. Thealgorithm performs edge linking, aggregating weak pixels that are8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the

following syntax:

2In someimplementations, only theneighbors along alinenormal to thegradient orientation at theedgepixel are

considered, not the entire 8-neighborhood.

Second-order derivative edge detection

• Laplacian of Gaussian (LoG) transfer function

(2D cross-section of 3D plot) and mask

(kernel)

318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of

(a).

2. Thelocal gradient (intensity anddirection) iscomputed for eachpoint in thesmoothed

image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins

those ridges, leaving only the pixels at the top of each ridge, in a process known as

non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tl ow and Thi gh : ridge

pixels with value greater than Thi gh are considered strong edge pixels; ridge pixels

with values between Tl ow and Thi gh are said to be weak pixels. This process is

known as hysteresis thresholding.

5. Thealgorithm performs edge linking, aggregating weak pixels that are8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the

following syntax:

2In some implementations, only theneighborsalong alinenormal to thegradient orientation at theedgepixel are

considered, not the entire 8-neighborhood.

318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of

(a).

2. Thelocal gradient (intensity anddirection) iscomputed for eachpoint in thesmoothed

image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins

those ridges, leaving only the pixels at the top of each ridge, in a process known as

non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tl ow and Th i gh : ridge

pixels with value greater than Th i gh are considered strong edge pixels; ridge pixels

with values between Tl ow and Th i gh are said to be weak pixels. This process is

known as hysteresis thresholding.

5. Thealgorithm performsedge linking, aggregating weak pixels that are8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the

following syntax:

2In some implementations, only theneighbors along aline normal to thegradient orientation at theedgepixel are

considered, not the entire 8-neighborhood.

63

Laplacian of Gaussian

• Generalized Laplacian operator

)
2

exp(]
)(

1[),(
2

22

2

22



nmnm
cnmh







Laplacian

operator
image edge

map
x(m,n) g(m,n) I(m,n)

Gaussian

LPF ()

Pre-filtering: attenuate the noise sensitivity of the Laplacian

64

Examples

Better than Laplacian alone but still sensitive due to zero crossing

65

Robust Laplacian-based Edge Detector

Laplacian

operator
image zero

crossing?

estimate

local variance

2>th

2

not an

edge point

No

yes

No

not an

edge point

edge

point

66

Examples

More robust but return multiple edge pixels (poor localization)

Canny Edge Detector

Canny edge approach is based on 3 objectives:

• Low error rate: all edges should be found

• Edge points should be well localized: the edges

located must be as close as possible to true

edges

• Single edge point response: should return only

one point for each true edge point

68

Flow-chart of Canny Edge Detector*
(J. Canny’1986)

Original image

Smoothing by Gaussian convolution

Differential operators along x and y axis

Non-maximum suppression

finds peaks in the image gradient

Hysteresis thresholding locates edge strings

Edge map

The Canny edge detector
1. The input image is smoothed using a Gaussian low pass filter

(LPF), with a specified value of σ.

2. The local gradient (intensity and direction) is computed for each
point in the smoothed image.

3. The edge points at the output of step 2 result in wide ridges.
The algorithm thins those ridges, leaving only the pixels at the
top of each ridge (non-maximal suppression).

4. The ridge pixels are then thresholded using two thresholds, Tlow
and Thigh: ridge pixels with value greater than Thigh are
considered strong edge pixels; ridge pixels with values
between Tlow and Thigh are said to be weak pixels. This process
is known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels
that are 8-connected to the strong pixels.

In MATLAB: J = edge(I, 'canny', T, sigma);

70

Canny Edge Detector Example

original image vertical edges horizontal edges

norm of the gradient after thresholding after thinning

http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny1.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/lena.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny2.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny3.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny4.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny5.gif

Compute Image gradient

Example

void CannyThreshold(int, void*){

blur(src, detected_edges, Size(3, 3));

Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio,

kernel_size);

dst = Scalar::all(0);

src.copyTo(dst, detected_edges);

imshow(window_name, dst);

}

int main(int argc, char** argv){

src = imread("d:/image/cameraman2.tif", IMREAD_GRAYSCALE);

dst.create(src.size(), src.type());

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

createTrackbar("Min Threshold:", window_name, &lowThreshold,

max_lowThreshold, CannyThreshold);

CannyThreshold(0, 0);

waitKey(0);

return 0;

}

The Canny edge detector

(a) default values (σ = 1,

Tflow = 0.0625,

Thigh = 0.1563);

(b) σ = 0.5;

(c) σ = 2;

(d) σ = 1,

Tflow = 0.01,

Thigh = 0.1.

76

Edge Detection in Iris Image

>I=imread(‘'ris.bmp');

>c=edge(I, 'canny');

>[x,y]=find(c==1);

Edge linking and boundary detection

• Goal of edge detection: to produce an image
containing only the edges of the original
image.

• However, due to the many technical
challenges (noise, shadows, occlusion, etc,),
most edge detection algorithms will output an
image containing fragmented edges.

• Additional processing is needed to turn
fragmented edge segments into useful lines
and object boundaries.

• Hough transform: a global method for edge
linking and boundary detection.

The Hough transform

• A mathematical method designed to find

lines in images.

– It can be used for linking the results of edge

detection, turning potentially sparse, broken,

or isolated edges into useful lines that

correspond to the actual edges in the image.

The Hough transform
• Let (x,y) be the coordinates of a point in a binary image (containing

thresholded edge detection results).

• The Hough transform stores in an accumulator array all pairs (a,b) that

satisfy the equation y = ax+ b. The (a,b) array is called the transform

array.

– Example:, the point (x,y) = (1,3) in the input image will result in the equation

b = -a + 3, which can be plotted as a line that represents all pairs (a,b) that

satisfy this equation.

The Hough transform
• Since each point in the image will map to a line in the transform

domain, repeating the process for other points will result in many

intersecting lines, one per point.

• The meaning of two or more lines intersecting in the transform domain

is that the points to which they correspond are aligned in the image.

• The points with the greatest number of intersections in the transform

domain correspond to the longest lines in the image.

Line Detection using Hough Transform

• Consider a line that passes through points

(xi,yi) and (xj,yj)

• The line equation can be written as:

yi = a xi + b and yj = a xj + b

• We can also write

b = -xi a + yi and b = -xj a + yj

Example

Concept
• The parameter-space lines corresponds to all

point (xk,yk) in the xy plane could be plotted.

• Lines in the plane could be found by identifying

points in parameter space where large number

of lines intersect (b = -xi a + yi)

• However, a (slope of the line) can approach

infinity when we approach the vertical direction

• One way around is to use: x cos  + y sin  = 

Sinusoidal curves

Example

Hough Transform Peak Detection

Example

OpenCV

The Hough transform
• Coordinate conversion

– Describing lines using the equation y = ax

+ b (where a represents the gradient)

poses a problem, though, since vertical

lines have infinite gradient.

• This limitation can be circumvented by

using the normal representation of a

line, which consists of two parameters:

ρ and θ.

• In this new representation, vertical

lines will have θ = 0.

• It is common to allow ρ to have

negative values, therefore restricting θ

to the range −90◦ < θ ≤ 90◦.

The Hough transform

• Under the new set of coordinates, the Hough transform

can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of

values for ρ and θ. Each element in this array is often

referred to as an accumulator cell.

2. For each pixel (x,y) in the image and for each chosen

value of θ, compute x cos θ + y sin θ and write the

result in the corresponding position (ρ, θ) in the

accumulator array.

3. The highest values in the (ρ, θ) array will correspond

to the most relevant lines in the image.

int main(int argc, char** argv){

Mat src = imread("d:/image/checkerboard.png",

IMREAD_GRAYSCALE);

Mat dst, cdst;

Canny(src, dst, 50, 200, 3);

cvtColor(dst, cdst, CV_GRAY2BGR);

vector<Vec4i> lines;

HoughLinesP(dst, lines, 1, CV_PI / 180, 50, 50, 10);

for (size_t i = 0; i < lines.size(); i++){

Vec4i l = lines[i];

line(cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 3,

CV_AA);

}

imshow("source", src);

imshow("detected lines", cdst);

waitKey(0);

}

The Hough transform

• Example 14.6
EDGE LINKING AND BOUNDARY DETECTION 323

(a)

(b)

Figure 14.16 Hough transform example: (a) input image; (b) results of Hough Transform,

highlighting the intersections corresponding to the predominant lines in the input image.

in theHough transform results, where k ispassed asaparameter) and houghl i nes, which

draws the lines associated with the highest peaks on top of the original image.

EXAMPLE 14.7

In this example we use hough, houghpeaks, and houghl i nes on a grayscale test

image whose edges havebeen extracted using the Canny edge detector5.

Figure 14.17(a) shows the results of the Hough transform calculations with two

small squares indicating the two highest peaks. Figure 14.17(b) shows the result of

theCanny edge detector (displayed with black pixels against awhite background for

better visualization). Figure 14.17(c) displays the original image with the highest

(cyan) and second highest (yellow) lines overlaid.

The Hough transform can be extended and generalized to find other shapes in images.

Please refer to the “Learn more about it” section at the end of the chapter for useful

references.

5The complete sequence of MATLAB commands is available at the book web site.

EDGE LINKING AND BOUNDARY DETECTION 323

(a)

(b)

Figure 14.16 Hough transform example: (a) input image; (b) results of Hough Transform,

highlighting the intersections corresponding to the predominant lines in the input image.

in theHough transform results, wherek ispassed asaparameter) and houghl i nes, which

draws the lines associated with the highest peaks on top of the original image.

EXAMPLE 14.7

In this example we use hough, houghpeaks, and houghl i nes on a grayscale test

image whose edges havebeen extracted using the Canny edge detector5.

Figure 14.17(a) shows the results of the Hough transform calculations with two

small squares indicating the two highest peaks. Figure 14.17(b) shows the result of

the Canny edgedetector (displayed with black pixelsagainst awhite background for

better visualization). Figure 14.17(c) displays the original image with the highest

(cyan) and second highest (yellow) lines overlaid.

The Hough transform can be extended and generalized to find other shapes in images.

Please refer to the “Learn more about it” section at the end of the chapter for useful

references.

5The complete sequence of MATLAB commands is available at the book web site.

The Hough transform

• In MATLAB:

– The IPT also includes two useful companion

functions for exploring and plotting the results

of Hough Transform calculations:

•houghpeaks: identifies the k most salient peaks in

the Hough transform results, where k is passed as

a parameter.

•houghlines: draws the lines associated with the

highest peaks on top of the original image.

The Hough transform

95

Line/Polynomial Fitting

y=ax+b y=ax2+bx+c

x

y

x

y

MATLAB function: P = POLYFIT(X,Y,N)

Polynomial of degree N

Analytical vs. Numerical

Solutions

96

23)(2  xxxf

2,1 21  xxTwo roots:

)(
3

2
023)(

2
2 xg

x
xxxxf 




3

2
2

1




i
i

x
xsuccessive substitution:

Analytical

Numerical

97

Basic Idea Behind




x

y




?

Question: Can we find a transform that maps a line to a point?

98

Radon/Hough Transform:

Mathematics*

• (x1y1)

Two of an infinite number
of lines through point (x1,y1) - Space

min max

min

max

•

•

Sample of
two lines

99

Generalizations of Hough Transform

(from 2D to N-D)

Analytic Form Parameters Equation

Line ,  xcos+ysin=

Circle x0, y0,  (x-xo)
2+(y-y0)

2=r2

Parabola x0, y0, ,  (y-y0)
2=4(x-xo)

Ellipse x0, y0, a, b,  (x-xo)
2/a2+(y-y0)

2/b2=1

100

Radon/Hough Transform: Image

Examples

Conclusion: Line detection can be implemented by point (peak)

detection in the Radom/Hough transform domain

101

Line Detection from Real-world

Images

Gray Scale Image Edge Image (Canny)

102

Peak Finding

Application in Computer

Tomography*

(From Jain’s Fig.10.1)

104

Beyond Edge Detection
• Edges are among the earliest primitives

that have been studied in computer vision,
but their definition remains fuzzy

• There are many other primitives that can
be more rigorously defined or at least
conceptually easier to define

– Corner, line, circle, ellipse, square, triangle, …

• The ultimate vision tasks involve the
detection of general objects

– Face, pedestrian, vehicle, mouth, eyes, door

105

Two Paradigms

• Model-based approaches
– Build an explicit model to characterize the objects we want

to detect

– Suitable for the class of simple objects for which good
models are relatively easy to find

– Examples: corner/line/circle detection

• Data-driven (machine learning) approaches
– Provide a training set (e.g., manually detected results) and

detector works like a black box

– Suitable for the class of complex objects for which good
models are NOT easy to find

– Examples: neural network, support vector machine

Questions?

