
Artificial Neural Network

Forward Propagation

Dr. Mongkol Ekpanyapong

Black Block model

• Artificial Neural Network (ANN) is

considered as a black box model

• In contrast with other machine learning

such as decision tree or Support Vector

Machine (SVM) that are considered as a

white box model

Perceptron Model

• It is the cell mainly found in the brain

• The cell consists of:

– Cell body

– Dendrits (branching extensions)

– Axon (very long extension)

– Telodendria (split off Axon)

– Synapses (terminal of Telodendria), it will

connect to the other celss

Perceptron Model

Model Comparison

ANN Model

• Input vector

• Weight vector

• Activation Function

• Output vector

Weighted Sum Function

• Linear combination can be used for weight

calculation

• Python code:

Activation Function

• Activation function is used to introduce

non-linearity in the system

How does Perceptron learn?

1. The neuron calculates the weighted sum

and apply the activation function to make

a prediction (feedforward process)

2. It then compares the prediction with the

correct label to calculate the error

3. Update the weight: if the prediction is too

high, it will adjust the weights to make a

lower prediction next time

4. Repeat Step 1

Power of One Neural

It can handle linearly separable problem

Adding more Neurals?

Linear vs. Non-Linear

Linear Non-Linear

Multi-Layer Perceptron (MLP)

• Introduce the hidden layer

Multi-Layer Perceptron Architecture

• Can handle non-linear problem

Activation Function

Also referred as transfer function or nonlinearities

List of activation function:

• Linear transfer function

• Step function

• Sigmoid/Logistic function

• Softmax function

• Hyperbolic Tangent Function (tanh)

• Rectified Linear Unit (ReLU)

• Leaky ReLU

Linear Transfer Function

activation(z) = z = wx + b

Step Function

Let y is the output

If the input x ≥ 0, y =1

else y = 0

Sigmoid/Logistic Function

• It is commonly used in binary classifiers

• It is also called S-shape curve

Sigmoid Function Explanation

• Consider you have medical condition of

the patients having diabetes with only one

feature age

Normalized

Number of patients

Sigmoid Function Explanation

• We don’t want negative probability

• We don’t want 38 and 43 to have the

same probability

Exponential function can help

Softmax Function

• Use in multi-class classification

Hyperbolic Tangent Function(tanh)

• Shifted version of sigmoid with value

between -1 and 1

• It is usually used in hidden layers

Rectified Linear Unit (ReLU)

• Current state of the art of activation

functions because of its simplicity

Leaky LRU

• Provide some negative weight over ReLU

Feedforward

• The process of computing the linear

combination and applying activation

function is called Feedforward

Feedforward definition

• Layers:

• Weights and biases (w, b)

• Activation function ()

• Node value (a)

Feedforward calculation

Error Function

• It measures how wrong the neural network

prediction is with respect to the expected

output (the label)

• The error should always be positive (to

avoid the error to cancel each other)

Mean Square Error

• It is commonly used in regression problems

• It is sensitive to the outliers

Mean Absolute Error

• Mean Absolute Error

• It is not continuous function

Cross Enthropy

• It is commonly used in classification

problem

• It amplifies the weight that are high

probability

Example

• The real probability:

• The first prediction:

• The error function:

Example

• The second prediction

• The error function

Optimization

• In neural networks, optimizing the error

means updating the weights and biases

until we find the optimal weights or the

best values for weights to produce the

minimum error

Weight Value

Batch Gradient Descent

• What is a gradient?

What is a gradient descent?

• Gradient descent means updating the

weights iteratively to descent the slop of

the error curve until we get the point with

minimum error

How does gradient descent work?

• The step direction (gradient)

• The step size (learning rate)

Example

The step size

• Impact of large step size

Gradient Descent

• Weight function

• Weight update

Weight update equation

* alpha

Partial Derivative

Derivative Rule

Example

Batch Gradient Descent (BGD)

• It uses the entire training set to update the

weight

• The error function

• N is the total number of data in training set

Pitfall of Batch Gradient Descent

• Not all cost functions look like simple

bowls

• To use the entire training set, the

computation is very expensive and slow to

train

Stochastic Gradient Descent (SGD)

• SGD is the most used optimization

algorithms for machine learning

• SGD randomly picks one instance in the

training set for each one stop and

calculates the gradient based only on that

single instance

Performance Comparison

Mini-batch Gradient Descent (MN-GD)

• The compromise between Batch GD and

Stochastic GD

• Group of training instead of a single

instance

• It is faster comparing with BGD

• It reduces small error from SGD

Backpropagation

• Feedforward: get the linear combination

and apply the activation function to get the

output (y)

• Compare the prediction with the label to

calculate the error or loss function

Backpropagation

• Use gradient descent optimization

algorithm to compute the weight update

that optimizes the error function

Backpropagation

• It is based on the chain rule

Chain Rule in Derivatives

• Chain Rule

• The chain rule is a formula for calculating the

derivatives of functions that are composed of

functions inside other functions

Example of Chain Rule

• We want to calculate dE/dx

Derivative function

Python

Backpropagation Example

Backpropagation Summary

• Forward pass is to calculate predicted

output

• Backward propagation is to update the

weight to minimize the error

Weight update equation

* alpha

Example

• Compute the feed forward and back propagation for 1

iteration of weight update

Feedforward

Backward Delta

• 1 – 0.093 = 0.907

0.907 * 0.4= - 0.3628

-0.3628*0.1 -0.2721* (-0.3) = 0.04535

-0.3628* 0.2 -0.2721*0.2 = - 0.12689

Weight update

Level 1

0 – 1 * 0.04535 = - 0.04535

0.1 – 1 *0.04535 = 0.05465

0.3 + 1 * 0.12698 = 0.42698

0.4 + 1 *0.12698 = 0.52698

Level 2

0.1 + 0.1* 0.3628 = 0.13628

0.2 + 0.7*0.3628 = 0.45396

-0.3 + 0.1 *0.2721 = -0.2729

0.2 + 0.7 * 0.2721 = 0.39047

Level 3

0.4 + 0.15*0.907 = 0.53605

0.3 + 0.11 * 0.907 = 0.39977

Backward Weight update

Python program example
import numpy as np

np.random.seed(1)

def relu(x):

return (x > 0) * x # returns x if x > 0

return 0 otherwise

def relu2deriv(output):

return output>0 # returns 1 for input > 0

return 0 otherwise

input1 = np.array([[1, 1],

[1, 1]])

output1 = np.array([[1, 1]]).T

alpha = 1

hidden_size = 3

print(input1.shape)

weights_0_1 = np.array([[0, 0.3],

[0.1, 0.4]])

print(weights_0_1.shape)

weights_1_2 = np.array([[0.1, -0.3],

[0.2, 0.2]])

print(weights_1_2.shape)

weights_2_3 = np.array([[0.4],[0.3]])

print(weights_2_3.shape)

for iteration in range(1):

output_error = 0

for i in range(len(input1)):

layer_0 = input1[i:i+1]

print("layer 0",layer_0.shape)

layer_1 = relu(np.dot(layer_0,weights_0_1))

layer_2 = relu(np.dot(layer_1,weights_1_2))

output = np.dot(layer_2,weights_2_3)

output_error += np.sum((output - output1[i:i+1]) ** 2)

output_delta = (output - output1[i:i+1])

print("delta output:",output_delta)

layer_2_delta =

output_delta.dot(weights_2_3.T)*relu2deriv(layer_2)

layer_1_delta =l

ayer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1)

weights_2_3 -= alpha * layer_2.T.dot(output_delta)

weights_1_2 -= alpha * layer_1.T.dot(layer_2_delta)

weights_0_1 -= alpha * layer_0.T.dot(layer_1_delta)

Questions?

