

Artificial Neural Network Forward Propagation Dr. Mongkol Ekpanyapong

Black Block model

 Artificial Neural Network (ANN) is considered as a black box model

 In contrast with other machine learning such as decision tree or Support Vector Machine (SVM) that are considered as a white box model

Perceptron Model

- It is the cell mainly found in the brain
- The cell consists of:
 - Cell body
 - Dendrits (branching extensions)
 - Axon (very long extension)
 - Telodendria (split off Axon)
 - Synapses (terminal of Telodendria), it will connect to the other celss

Perceptron Model

Model Comparison

ANN Model

- Input vector
- Weight vector
- Activation Function
- Output vector

Weighted Sum Function

 Linear combination can be used for weight calculation

$$z = \sum x_i .w_i + b (bias)$$

$$z = x_1 .w_1 + x_2 .w_2 + x_3 .w_3 + + x_n .w_n + b$$

• Python code:

X is the input vector (denoted with an uppercase X)
w is the weights vector, b is y-intercept
z = np.dot(w.T,X) + b

Activation Function

 Activation function is used to introduce non-linearity in the system


```
# z is the weighted sum = sum = \sum x_i \cdot w_i + b

def step_function(z):

    if z <= 0:

        return 0

    else:

    return 1
```


How does Perceptron learn?

- 1. The neuron calculates the weighted sum and apply the activation function to make a prediction (feedforward process)
- 2. It then compares the prediction with the correct label to calculate the error
- Update the weight: if the prediction is too high, it will adjust the weights to make a lower prediction next time
- 4. Repeat Step 1

Power of One Neural

It can handle linearly separable problem

Adding more Neurals?

Linear vs. Non-Linear

Linear

Non-Linear

Multi-Layer Perceptron (MLP)

• Introduce the hidden layer

Multi-Layer Perceptron Architecture

• Can handle non-linear problem

Activation Function

Also referred as transfer function or nonlinearities List of activation function:

- Linear transfer function
- Step function
- Sigmoid/Logistic function
- Softmax function
- Hyperbolic Tangent Function (tanh)
- Rectified Linear Unit (ReLU)
- Leaky ReLU

Linear Transfer Function

activation(z) = z = wx + b

Step Function

Let y is the output If the input $x \ge 0$, y = 1else y = 0

$$\text{output} = \begin{cases} 0 & \text{if } w \cdot x + b \le 0\\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

Sigmoid/Logistic Function

- It is commonly used in binary classifiers
- It is also called S-shape curve

Sigmoid Function Explanation

 Consider you have medical condition of the patients having diabetes with only one feature age

> Normalized Number of patients

Sigmoid Function Explanation

- We don't want negative probability
- We don't want 38 and 43 to have the same probability

Exponential function can help

Softmax Function

Use in multi-class classification

Hyperbolic Tangent Function(tanh)

- Shifted version of sigmoid with value between -1 and 1
- It is usually used in hidden layers

$$tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

Rectified Linear Unit (ReLU)

 Current state of the art of activation functions because of its simplicity

Leaky LRU

Provide some negative weight over ReLU

 $f(x) = max \ (0.01x, x)$

Feedforward

 The process of computing the linear combination and applying activation function is called Feedforward

Feedforward definition

- Layers:
- Weights and biases (w, b)
- Activation function (σ)
- Node value (a)

Feedforward calculation

Error Function

- It measures how wrong the neural network prediction is with respect to the expected output (the label)
- The error should always be positive (to avoid the error to cancel each other)

Mean Square Error

- It is commonly used in regression problems
- It is sensitive to the outliers

$$E(W,b) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Notation	Meaning	
E (W,b)	The loss function. Can be also annotated as $J\left(W,b ight)$ in other literature	
W	Weights matrix. In some literature, the weights are denoted by the theta sign $\boldsymbol{\theta}$	
Ь	Biases vector	
Ν	Number of training examples	
ŷi	Prediction output. Also notated as $h_{W, b}(X)$ in some deep learning literature	
уі	The correct output (the label)	
(ŷi- yi)	Usually called the residual	

Mean Absolute Error

Mean Absolute Error

$$E(W,b) = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

• It is not continuous function

Cross Enthropy

 It is commonly used in classification problem

$$E(W,b) = -\sum_{i=1}^{m} y_i \log(p_i)$$

It amplifies the weight that are high probability

• The real probability:

Probability(cat) P(dog) P(fish) 0.0 1.0 0.0.

• The first prediction:

Probability(cat) P(dog) P(fish) 0.2 0.3 0.5

• The error function:

 $E = -(0.0 * \log(0.2) + 1.0 * \log(0.3) + 0.0 * \log(0.5)) = 1.2$

• The second prediction

Probability(cat) P(dog) P(fish) 0.3 0.5 0.2

• The error function

 $E = - (0.0*\log(0.3) + 1.0*\log(0.5) + 0.0*\log(0.2)) = 0.69$

Optimization

 In neural networks, optimizing the error means updating the weights and biases until we find the optimal weights or the best values for weights to produce the minimum error

Weight Value

Batch Gradient Descent

• What is a gradient?

What is a gradient descent?

 Gradient descent means updating the weights iteratively to descent the slop of the error curve until we get the point with minimum error

How does gradient descent work?

• The step direction (gradient)

• The step size (learning rate)

The step size

• Impact of large step size

Gradient Descent

• Weight function

$$\Delta w_i = -\alpha \frac{dE}{dw_i}$$

• Weight update

$$w_{next-step} = w_{current} + \Delta w$$

Weight update equation

error = ((input * weight) - goal_pred) ** 2

weight = weight - (alpha * derivative)

weight = weight - (input * (pred - goal_pred)*)alpha

Partial Derivative

Derivative Rule

Constant Rule: $\frac{d}{dx}(c) = 0$	Difference Rule: $\frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x)$
Constant Multiple Rule: $\frac{d}{dx}[cf(x)] = cf'(x)$	Product Rule: $\frac{d}{dx} [f(x)g(x)] - f(x)g'(x) + g(x)f'(x)$
Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$	Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x)\right]^2}$
Sum Rule: $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$	Chain Rule: $\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$

Example

 $f(x) = 10 x^5 + 4 x^7 + 12 x$

$$f'(x) = 50 x^4 + 28 x^6 + 12$$

Batch Gradient Descent (BGD)

- It uses the entire training set to update the weight
- The error function

$$L(W,b) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

• N is the total number of data in training set

Pitfall of Batch Gradient Descent

 Not all cost functions look like simple bowls

 To use the entire training set, the computation is very expensive and slow to train

Stochastic Gradient Descent (SGD)

- SGD is the most used optimization algorithms for machine learning
- SGD randomly picks one instance in the training set for each one stop and calculates the gradient based only on that single instance

Performance Comparison

GD

- 1) Take ALL the data
- 2) Compute the gradient
- 3) Update the weights and take a step down
- 4) Repeat for n number of epochs (iterations)

Stochastic GD

- 1) randomly shuffle samples in the training set
- 2) Pick one data instance
- 3) Compute the gradient
- 4) Update the weights and take a step down
- 5) Pick another one data instance
- 6) Repeat for *n* number of epochs (training iterations)

Top View of the error mountain

Top View of the error mountain

Mini-batch Gradient Descent (MN-GD)

- The compromise between Batch GD and Stochastic GD
- Group of training instead of a single instance
- It is faster comparing with BGD
- It reduces small error from SGD

Backpropagation

 Feedforward: get the linear combination and apply the activation function to get the output (y)

$$\hat{y} = W^{(3)} \circ \sigma \circ W^{(2)} \circ \sigma \circ W^{(1)} \circ \sigma \circ (x)$$

• Compare the prediction with the label to calculate the error or loss function

$$E(W,b) = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

Backpropagation

 Use gradient descent optimization algorithm to compute the weight update that optimizes the error function

$$\Delta w_{i} = -\alpha \frac{dE}{dw_{i}}$$

$$\Delta w_{i} = -\alpha \frac{dE}{dw_{i}}$$

$$dw_{i} = \frac{dw_{i}}{dw_{i}}$$

$$dw_{i} = \frac{dw_{i}}{dw_{i}}$$

$$dw_{i} = \frac{dw_{i}}{dw_{i}}$$

$$W = \frac{W}{dw_{i}} - \alpha \left(\frac{\partial Error}{\partial w_{x}}\right)$$

$$dw_{i} = \frac{\partial W}{\partial w_{i}}$$

Backpropagation

• It is based on the chain rule

Chain Rule in Derivatives

- Chain Rule Chain Rule: $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$
- The chain rule is a formula for calculating the derivatives of functions that are composed of functions inside other functions

$$\frac{d}{dx}f(g(x)) = \frac{d}{dx} \text{ outside function } * \frac{d}{dx} \text{ inside function}$$
$$= \frac{d}{dx}f(g(x)) * \frac{d}{dx}g(x)$$

Example of Chain Rule

• We want to calculate dE/dx

Derivative function

Figure 10-8. Activation functions and their derivatives

Function	Forward prop	Backprop delta
relu	ones_and_zeros = (input > 0) output = input*ones_and_zeros	mask = output > 0 deriv = output * mask
sigmoid	output = 1/(1 + np.exp(-input))	deriv = output*(1-output)
tanh	<pre>output = np.tanh(input)</pre>	deriv = 1 - (output**2)
softmax	<pre>temp = np.exp(input) output /= np.sum(temp)</pre>	<pre>temp = (output - true) output = temp/len(true)</pre>

Backpropagation Example

The error backpropagated to the edge $w_{1,3}^{(1)} = effect of error on edge 4 * effect on edge 3 * effect on edge 2 * effect on target edge$

Backpropagation Summary

- Forward pass is to calculate predicted output
- Backward propagation is to update the weight to error = ((input * weight) - goal_pred) ** 2

Weight update equation

error = ((input * weight) - goal_pred) ** 2

weight = weight - (alpha * derivative)

weight = weight - (input * (pred - goal_pred)*)alpha

Compute the feed forward and back propagation for 1 iteration of weight update

Feedforward

Backward Delta

• 1 - 0.093 = 0.907

0.907 * 0.4= - 0.3628 -0.3628*0.1 -0.2721* (-0.3) = 0.04535 -0.3628* 0.2 -0.2721*0.2 = - 0.12689

Weight update

Level 1

- 0 1 * 0.04535 = -0.04535
- 0.1 1 * 0.04535 = 0.05465
- 0.3 + 1 * 0.12698 = 0.42698
- 0.4 + 1 *0.12698 = 0.52698

Level 2

- $0.1 + 0.1^* \ 0.3628 = \ 0.13628$
- $0.2 + 0.7^* 0.3628 = 0.45396$
- -0.3 + 0.1 *0.2721 = -0.2729
- 0.2 + 0.7 * 0.2721 = 0.39047
- Level 3
- $0.4 + 0.15^* 0.907 = 0.53605$
- 0.3 + 0.11 * 0.907 = 0.39977

Backward Weight update

Python program example

```
import numpy as np
np.random.seed(1)
def relu(x):
  return (x > 0) * x \# returns x if x > 0
               # return 0 otherwise
def relu2deriv(output):
  return output>0 # returns 1 for input > 0
             # return 0 otherwise
input1 = np.array([[1, 1]],
             [1, 1]])
output1 = np.array([[ 1, 1]]).T
alpha = 1
hidden_size = 3
print(input1.shape)
```



```
for iteration in range(1):
  output\_error = 0
  for i in range(len(input1)):
     layer_0 = input1[i:i+1]
     print("layer 0",layer_0.shape)
     layer_1 = relu(np.dot(layer_0,weights_0_1))
     layer_2 = relu(np.dot(layer_1,weights_1_2))
     output = np.dot(layer_2,weights_2_3)
     output_error += np.sum((output - output1[i:i+1]) ** 2)
     output_delta = (output - output1[i:i+1])
     print("delta output:",output_delta)
     layer_2_delta =
output_delta.dot(weights_2_3.T)*relu2deriv(layer_2)
     layer_1_delta =
ayer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1)
     weights_2_3 -= alpha * layer_2.T.dot(output_delta)
     weights_1_2 -= alpha * layer_1.T.dot(layer_2_delta)
     weights_0_1 -= alpha * layer_0.T.dot(layer_1_delta)
```


Questions?

