Morphological Image
Processing

Dr. Mongkol Ekpanyapong

E What is mathematical morphology? *+

« Basic principle: the extraction of geometrical
and topological information from an unknown set
(an image) through transformations using
another, well-defined, set, known as structuring
element (SE).

* In morphological image processing, the design
of SEs, their shape and size, is crucial to the
success of the morphological operations that
use them.

Preliminaries

* The language of mathematical morphology
IS set theory

» Set terminology:

Let A be a set of Z2. if w(x,y) is an element
of A, we write: w e A

If w IS not an element of A, we write: w ¢ A

« Basic set operations:

— Complement AC = {z]z ¢ A)
— Difference A—B=1{zlz€ A,z¢ B} = AN B°
— Translation Ay ={clc=a+w, for ac A}

— Reflection A= {z|z=—a for ac A}

X1

(@)

(b)

o

(d)

» Logical equivalents of set theory operations

— Intersection ~ logical AND
C ={(z,y)l(z,y) € Aand (z,y) € B}

-y

1 ifA(x,y) andB (x,y) areboth 1
C oY) = 0 otherwise

— Similarly:

Complement ~ logical NOT
« Union ~ logical OR

* Difference ~ A AND (NOT B)

Examples
* Logical equivalents of set theory operations

7p)
-
o
=
©
—
D
O
O

dAUB

e)AnB

)A-B

Set Operation on Images

abec
de

FIGURE 10.1

{a) Two sets A
and B. (b) The A
union of 4 and B. AUBRB ANB
{c) The
intersection of

A and B. (d) The
complement of A.
{e) The difference
between A and B.

(A)

Set operations

MATLAB Expression

Set Operation for Binary Images Name
AME A&B AND
AURB A|B OR
AF ~A NOT
A-B AB ~B DIFFERENCE

TABLE 10.1
Uszing logical
eXpressions in
MATLAB to
perform set
operations on
binary images.

et operations on Binary Imag

UTK GT UTK

abec
de f
SRS FIGURE 10.3 (a) Binary image A. (b) Binary image B. (¢) Complement -A. (d) Union A |-B. (¢) Intersection A & B.

LY

9 (1) Set difference A & ~B.

Structure Element

« The structuring element (SE) Is the basic neighborhood
structure associated with morphological image
operations.

 Itis usually represented as a small matrix, whose shape
and size impact the results of applying a certain
morphological operator to an image.

« Although a structuring element can have any shape, Its
Implementation requires that it be converted to a
rectangular array.

— For each array, the shaded squares correspond to the
members of the SE whereas the empty squares are
used for padding, only.

square Cross

Matlab’s strel function Is used to generate
SE structure, e.qg., strel(‘'square’,3);

Structuring Element

MORPH_RECT (0) - a rectangular structuring element:

MORPH_ELLIPSE (2) - an elliptic structuring element, that is, a filled
ellipse inscribed into the rectangle

MORPH_CROSS (1)- a cross-shaped structuring element:

CV_SHAPE_CUSTOM (100) - custom structuring element

Dilation

* The two fundamental morphological image
operations.

— Dilation: a morphological operation whose
effect is to “grow” or “thicken” objects in a
binary image.

* The extent and direction of this thickening is

controlled by the size and shape of the structuring
element.

« Mathematically:

AaB= {::|(}:?}z A+ m}

Dilation

In words, this Is the set of all displacements
z such that B, and A are overlapped at
least by one element

A®B
ADB
ADB

d/4

>

I
ws!

abc
d e

FIGURE 9.6

(a) Set A.

(b) Square
structuring ele-
ment (the dot de-
notes the origin).
(c) Dilation of A
by B, shown
shaded.

(d) Elongated
structuring ele-
ment. (e) Dilation
of A using this
element. The
dotted border in
(c) and (e) is the
boundary of set A,
shown only for
reference

Example of

Origin
Oo0o0a0on _\1 ﬂb

goo0o0o01T111111
oo000111111100000
ooo000111 111100000 1 c

00000 1 d

O00DO0ODO0O0OO0DO0DO0O0O0ODODO0OO0DOO0O0 FIG“HE 10"‘
DO0O0OO0DOOQO0OO0DO0OO0OQOODO0O0DO0ODO0ODON [l]llStl‘ﬂtiG]] Df

L2 0 I A) L L
dilation.
The structuring element translated to [El':l Dl’lg]ﬂﬂ] Image
these locations does not overlap any with 1'ectﬂngu]al'
I-valued pixels in the original image. .
object.
ff' 11 (b) Structuring
== element with five
gf slefalole]o]e pixels arranged
(IR JEZEBE BERE BN 1 0 s .
TR 1l T mﬂdla_gpnal line.
V111111 e The origin, or

#fe 1111|121 |1|1| [» When the origin is center., of the

oo o] e[oo]o]e]] translated to the] .

oo [ofa]a]e]e] “+" locations, the SEIUCEUT]ﬂg
structuring element element is shown
overlaps 1-valued =
pixels in the original with a dark
image. border.

(c) Structuring
LI Y (Y O
LI I T A [O | E]Enjﬂnt
DOO0OO0O0O0ODO0OO0DO0O0O0DO0000DO00 translated to
00000001111111000 several locations
ooo0oo0o0011 1111110000 .] .
00000111111111000 In the image.
00001111111110000 (d) Output image.
000111111111 00000 Theshad-:dregic:n
ooo011111111000000 } .
00011111110000000 shnws_ the location
0O0O0D0O0O00D0D00D0D0DO00DO0DO00 of 1s in the
DO0O0OO0DO0OO0OO0DO0DO0OCO0DOO0ODO0OD0DO0O0DOD0 o1l 1
{1 Y Y Y 1 | Gr]gl]jﬂl ln]ﬂge‘

OpenCV code

Int main(int argc, char** argv){

Mat src = imread("d:/image/broken_text.tif",
IMREAD GRAYSCALE);

Mat dst;

Mat element = getStructuringElement(MORPH_CROSS,
Size(3, 3));

Imshow("src", src);
dilate(src, dst, element);
Imshow("result", dst);
walitKey(0); //

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recegnize a date using "00"
as 1200 rather than the yEgdr
2000. /

&

Historically, certain computer b

programs were written using EITII (X W/

only two digits rather than (a) Sample text of

CUTE G EHUTRGERET T LEL I poor resolution

year. Accordingly, the with broken

company's software may characters (see

recognize a date using "00" magnified V{ew).
(b) Structuring

as 1900 rather than the year

element.
2000. .

(c) Dilation of (a)
by (b). Broken
segments were
joined.

Erosion

* Erosion: a morphological operation whose
effect is to “shrink” or “thin” objects in a
binary image.

— The direction and extent of this thinning is

controlled by the shape and size of the
structuring element.

— Mathematically:

A6 B ={:|(B). A £0}

Erosion

In words, this Is the set of all point z, such
that B, translate by z Is contained in A

ASB
ASB
ASB

I L
o

= i
X

TR -

Example of Erosion

d
d/4 i i
d o [a/a |
B | i
468
A [[
ag AA s
d/4
i df2
®\d i \ i_
i aop 4°
B T 3d4
d/8 d/8

d e FIGURE 9.4 (a) Set A. (b) Square structuring element, B. (c) Erosion of A by B, shown
shaded. (d) Elongated structuring element. (e¢) Erosion of A by B using this element.
The dotted border in (c) and (e) is the boundary of set A, shown only for reference.

]
0
0
1]
0
1
1
1
]
]
]

1]
i
i
i
0
1
1
1
[}
1]
1]
1]

L
)
]
]
0
1
1
1
L
L
0

[SF——

i
0
1
1
1
]

The result is 0 at these locations in the output
image because all or part of the structuring
element overlaps the background.

]
1111 1/1]1
111117171
1114111

- The result is 1 at this location in the output
- image because the structuring element fits
- entirely within the foreground.

0
i
[}
1
0
0
]
]

]
]
]
1]
]
1
0
1}
1}

1]
1]
1]
11}
1]
1
0
0
[}
]

]
1
1]
1]
i}
0
0
]

L
L
0
]
]
1
[I]
[I]

0
0
0
0
0
1
0
]
0

Example of Binary Data

ab
c
d

FIGURE 10.7
Nlustration of
ET0SION.

{a) Original image
with rectangular
object.

(b} Structuring
element with
three pixels
arranged in a
vertical line. The
origin of the
structuring
element is shown
with a dark
border.

(c) Structuring
element
translated to
several locations
in the image.

(d) Output image.
The shaded region
shows the location
of 1s in the
original image.

OpenCV

Int main(int argc, char** argv){
Mat src = imread("d:/image/wirebond-mask.tif",
IMREAD GRAYSCALE);

Mat dst;
Mat element = getStructuringélement(MORPH_ELLIPSE, Size(11,
11));

Imshow("src", src);
erode(src, dst, element);
iImshow("result", dst);
waitKey(0); //

An example of Erosion’s application

ab
cd

FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

486 X 486 binary
image of a wire-
bond mask.
(b)-(d) Image
eroded using
square structuring
elements of sizes
11 X 11,15 X 15,
and 45 X 45,
respectively. The
elements of the
SEs were all 1s.

Dilation and Erosion

* Erosion and dilation are dual operations

(AcB)Y=A°¢ B

A@®B=(A°c B)°

Dilation and Erosion

* Erosion and dilation can be interpreted in
terms of whether a SE fits or hits an image

(region)

e Erosion:
y) = 1 if se fits f
glx.y) = 0 otherwise

e Dilation:

1 if se hits f
{’;(J“.j;} — { JT(

0 otherwise

 We have seen, dilation expands the components
of an image and erosion shrinks them

Opening and Closing

* Opening of A by B is simply erosion of A by B
followed by the dilation of the result by B

* Closing of A by B Is simply dilation of A by B
followed by the erosion of the result by B

Opening and Closing
* The opening of A by B denoted A ° B Is defined as

Ao B=(A©B)® B

* The closing of A by B denoted A e B Is defined as

A+B=(AB B\ EnR

Opening

e Opening: erosion followed by dilation
e Mathematically:

Ao B=(AcB)& B

or: AoB=|J{(B).

(B). € A}

* In OpenCV: morphologyEx(src, dst, MORPH_OPEN,
element);

(ASB)®B

AoB =

D
o
-
©
>
LL

Opening

A°B=U|(B)(B), C Al

Translates of Bin A

abcd

FIGURE 9.8 (a) Structuring element B “rolling” along the inner boundary of A (the dot
indicates the origin of B). (b) Structuring element. (c) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a)

for clarity.

Q
O
=
©
X
LL]
O)

=
-
b
O

®

AoB

Closing

* Closing: dilation followed by erosion
« Mathematically:

AeB=(A®&B)= B

* In OpenCV: morphologyEx(src, dst,
MORPH_CLOSE, element);

ADB
AeB = (AGB)SB

Y

.rlllllll-

D
o
=
©
>
LL
o
S
0
O
O

o

¥

D
o
=
©
>
LL
o
S
0
O
O

®

abc

FIGURE 9.9 (a) Structuring element B “rolling” on the outer boundary of set A. (b) The
heavy line is the outer boundary of the closing. (c) Complete closing (shaded). We did
not shade A in (a) for clarity.

Opening and Closing

OB Translates of B inside A A o B

Translates of B
outside A

abec
de

FIGURE 10.9 Opening and closing as unions of translated structuring elements. {a) Set A and structuring
element B. {b) Tranzlations of B that fit entirely within set A. (¢) The complete opening {shaded). (d) Transla-
tions of B outside the border of A. (&) The complete closing (shaded).

a

=l Y =Niey

c
€
g
i

FIGURE 9.10
Morphological
opening and
closing. The
structuring
element is the
small circle shown
in various
positions in
(b).The SE was
not shaded here
for clarity. The
dark dot is the
center of the
structuring
element.

E OpenCV Morph Operation

cv:..morphologyEx to apply Morphological
Transformation such as:

Opening

Closing

Morphological Gradient
op Hat

Black Hat

Int main(int argc, char** argv){

Mat src = imread("d:/image/blobs.png", IMREAD GRAYSCALE);
Mat dstl,dst2;

Mat element = getStructuringElement(MORPH_RECT, Size(5, 5));
Imshow("src", src);

morphologyEx(src, dstl, MORPH_OPEN, element);
iImshow("resultl", dstl);

morphologyEx(src, dst2, MORPH_CLOSE, element);
imshow("result2", dst2);
waitKey(0); //

Hit or Miss Transformation

* The Hit-or-Miss transformation is to
identify specifics configuration of pixels
such as isolated foreground pixels or
pixels that are end-point of line segment

AR B={ABB)N (XS B)

Hit or Miss Transform

e Hit-or-miss (HoM) transform: a combination of
morphological operations that uses two structuring
elements (B, and B,) designed in such a way that the
output image will consist of all locations that match
the pixels in B, (a hit) and that have none of the
pixels in B, (a miss).

— Mathematically:

A®B=(As By)N(A° < By)

or.
A@B=(AGB,) - (A® By)

— In OpenCV: morphologyEx(src, dstl,
MORPH_HITMISS, element);

Example

* To identify the location of cross-shape
pixels configuration:

= o=
b s
b Y

Example using this:

A®@B=(AcB,) - (Aa B,)

= o e e e e e e

==

=

[y SEra—y

= e e e

=

[

e e

==

00
0o
00
10
00
00

e
=1 T

=
= e e e e

[Ey—

= =t

[T S

S

=

[T

(1]

= =

= e e e

e

.

[E T T —

oo
o0
oo
0o
00
0o
00
0o

= e e e e e e

== D=
R]

[T T S —

e e e e e
[t o R e B e R = T) Ty ey

[}

e T R SR —y

[-

= e e e e e e

=l =]

e

u-l

(1= = T -
L1

FIGURE 10.12

{a) Original image
A. (b) Structuring
element B).

{c) Erosion of A
bj" Bl‘

{d) Complement
of the original
image, A°.

{e) Structuring
element B,.

{f) Erosion of A°
by Bs. (g) Output
image.

Hit or Miss Example

(a) (b)

(©) d)

(e) ®

A=CUDUE w —(W-D)
[}
[]
[]
E Origin
L]
D
AC | I
| |~wen
. Y
AS (W -D)

(AeD)m(Ace[W‘%

ab

cd
e
f

FIGURE 9.12

(a) Set A. (b) A
window, W, and
the local back-
ground of D with
respect to

W, (W — D).

(c) Complement
of A. (d) Erosion
of A by D.

(e) Erosion of A°
by (W — D).

(f) Intersection of
(d) and (e), show-
ing the location of
the origin of D, as
desired. The dots
indicate the
origins of C, D,
and E.

Int main(int argc, char** argv){

Mat src = imread("d:/image/hit_miss.tif",
IMREAD GRAYSCALE);

Mat dstl, dst2;

Mat element = getStructuringElement(MORPH_RECT,
Size(5, 5));

Mat kernel = (Mat_<int>(3, 3) <<
0,0, 0,
0,1, 1,
0, 1, 1);
iImshow("src", src);
morphologyEx(src, dstl, MORPH_HITMISS, kernel);
iImshow("resultl", dstl);
waitKey(0); //

ab

FIGURE 10.13

(a) Original
image.

(b) Result of
applving the hit-
Or-miss
transformation
(the dots shown
were enlarged
to facilitate
viewing).

E Morphological Filtering

« Morphological filters are Boolean filters
that apply a many-to-one binary (or
Boolean) function h within a window W
INn the binary input image f(x,y),
producing at the output an image g(x,y)
given by:

gla,y) = h [Wf(z,y)]

Example

« Examples of Boolean operations (h):

— OR: equivalent to a morphological dilation with a
square SE of the same size as W.

— AND: equivalent to a morphological erosion with a
square SE of the same size as W.

— MAJ (majority): the morphological equivalent to a
median filter applicable to binary images.

Morphological filtering

(Ao B)eB)

* Application: noise removal ¢

Int main(int argc, char** argv){

Mat src = imread("d:/image/y_noise.tif",
IMREAD GRAYSCALE);

Mat dstl, dst2;

Mat element = getStructuringElement(MORPH_RECT,
Size(2, 2));

morphologyEx(src, dstl, MORPH_OPEN, element);
morphologyEx(dstl, dst2, MORPH_CLOSE, element);
iImshow("resultl", dst2);

waitKey(0); //

Boundary extraction

 Internal: pixels in A that sit at the edge of A.
BE(A) = A— (A B)

« External: pixels outside A that sit immediately next to A.
BE(A) = (A B)— A

* Morphological gradient: combination of internal and

external boundaries.
BE(A) = (A® B) — (AS B)

= ones (5,12)
(1:2,1)=0
(1:2,9)=0
(4:5,5)=0

= bwperim(a, 8)

a
a
#
a
b

(b)

ASB A-(A49B)
(c) (d)

Boundary Extraction

B(A) = A - (AS B)

A©B B(A)
ab
clid

FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A eroded by B. (d) Boundary,
given by the set difference between A and its erosion.

Example

ab

FIGURE 9.14

(a) A simple
binary image, with
Is represented in
white. (b) Result
of using

Eq. (9.5-1) with
the structuring
element in

Fig. 9.13(b).

Region Filling

Let p be a pixel 1n a region surrounded by an 8-connected boundary, A. The goal of
a region filling algorithm is to fill up the entire region with Is using p as a starting point
(i.e., setting it as 1). Region filling can be accomplished using an iterative procedure,

mathematically expressed as follows:

Xpe=(Xpe1 &8 B)NA° E=1.2.3,--. (13.27)

where: Xg = p and B 1s the cross-shaped structuring element. The algorithm stops at
the %" iteration if X = X_1. The union of X and A contains the original boundary
(A) and all the pixels within it labeled as 1.

» Hole filling

Region/Hole Filling

X,=(X, @ BNA k=123,

At iteration X, = X,_; then we fill all the
holes

XsUA

(b)
(d)

Xs

D
o
-
©
>
LL

(a)
(c)

A A€
Xy X1 X>
X X XgU A

oe A
=l ¢Rloy
— = 0

FIGURE 9.15 Hole
filling. (a) Set A
(shown shaded).
(b) Complement
of A.

(c) Structuring
element B.

(d) Initial point
inside the
boundary.
(e)—(h) Various
steps of

Eq. (9.5-2).

(i) Final result
[union of (a)
and (h)].

abc

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting
point for the hole-filling algorithm). (b) Result of filling that region. (c) Result of filling
all holes.

Connected Components

* [terative procedure, similar to region
filling

Xy = (X, @B)NA k=123 (13.28)

where: Xg = pand B 18 a suitable structuring element: cross-shaped for 4-connectivity,
3 x 3 square for 8-connectivity.

The algorithm stops at the k" iteration if X, = X, _;.

Connected Components

* Let S represent a subset of pixels in an image.
Two pixels p and g are said to be connected In
S If there exists a path between them consisting
entirely of pixels in S.

 For any pixel pin S, the set of pixels that are
connected to It Is called a connected component
of S.

 If it has only one connected component, the set
S Is called a connected set.

TR
2 W
(. B\
“ AP\ C
A R rmry
1\ =P
nel N ne; ors

« Given a pixel p at coordinates(x,y), 4-
neighbors of p denoted N,(p) are (x+1,y),
(x-1,y),(x,y+1), and (x,y-1)

* The four diagonal neighbors of p denoted
Np(p) are (x+1,y+1),(x+1,y-1),(x-1,y+1),
and (x-1,y-1)

* The 8-neigbors of p are the union of N,(p)
and Np(p)

4-neighbors and 8-neighbors

abec
de
f E

FIGURE 10.18

(a) Pixel p and

P P P its 4-neighbors,
(b) Pixel p and its
diagonal
neighbors,

(c) Pixel p and

1 1ts B-neighbors,

P (d) Pixels p and
q are 4-adjacent
and S-adjacent.
(e) Pixels p and g
are B-adjacent but
olol1l1]1 olol1l1l1 not 4-adjacent.
(f) The shaded
olo0|l 11010 olo|l 11010 pixels are both
4-connected and
1 (1100 1|11(00]0 B-connected.

(g) The shaded
pixels are
®-connected but
not 4-connected.

\. - -

A g s A5
an - Yl 1/
.

Finding Connected Components=

* Finding connected components

X, =(X,.®dB)NA k=123,

At iteration X, = X,_, then the algorithm
terminates

Xo

(b)
(d)

sEAE |

A>

D
o
-
©
>
LL

(c)

a
beld

= [|
FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array

containing a set with one connected component. (c¢) Initial array containing a 1 in the
region of the connected component. (d)-(g) Various steps in the iteration of Eq. (9.5-3).

ab /ﬂ"“\\ /""'“\

cd /f 1 i\ olo(olo|o0 1 i\ olo|lo|l0o]|o0

FIGURE 10.19 =

Connected 1 /111 ,lII II.*'fl f\ 0|0 1|1 1"'|IL S| 0|0

?an;gﬂc;ﬂems. 11111 Mo Il'\‘l 1,,! ol o 11111 \u 1 (1[N0 0O

4-connected 1l1]1llo]oTo (/1\\I 0 1111]II 0 ||"”'|II 0

components.

(b) Two 111|000 1] 0 1]1 11 JII oo 1) o

#-connected 111 }II 0|0 t.\ljl 0 111000 ||/ 0

components. f

(c) Label matrix Li1 1folo @ 0|0 Li1 1fo0]0 K

obtained using i

4-connectivity \{ 1)/ oloflolo]|o \{ 1 }/ olojlolo]|o0

{d) Label matrix S~ S

obtained using

8-connectivity. 1|1 |1 (0|00 jD]O 1(1|1|0o|0o|o|D]|O
1 (1)1 |0 (2|2 |0]|0 1|1 |1 |02 |2|0]|0
1|1 (1|02]|2(0]0 1|1 (1|02]2|0]|0
1|1 (100|040 1|1 (1|00 j0l2]|0
1 (1|1 |o0oj0|0O|d4]|0D 1 (1|1 |0oj0|loOf2]|0
1(1(1(oflolola]o0 1(1|1|oj0o|lof2]|0
1({1f(1(oflol3 o]0 1(1|1|loj0ol2|0]|0
1110|0000 1|1 |1 |0 |0|0|0]|0

Example

imread('circles.png'’) ;
bwmorph (A, 'skel’, Inf);
bwmorph (B, 'spur', Inf) ;
bwmorph (A, 'remove') ;
bwmorph (D, 'thicken', 3) ;
= bwmorph (E, 'thin', 3) ;

HEHOQmP
I

Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
void thresh_callback(int, void*){
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
Canny(src_gray, canny_output, thresh, thresh * 2, 3);

findContours(canny_output, contours, hierarchy, CV_RETR_TREE,
CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for (int i = 0; i< contours.size(); i++){

Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
rng.uniform(0, 255));

drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());

}
namedWindow("Contours", CV_WINDOW_ AUTOSIZE);

imshow("Contours", drawing);

int main(int argc, char** argv){
src_gray = imread("d:/image/Test3.png", IMREAD GRAYSCALE);
char* source_window = "Source";

namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src_gray);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh,
thresh_callback);

thresh_callback(0O, 0);

waitKey(0);
return(0);

-
0
C
O

=
0
D
-

@y

int main(int argc, char** argv){
Mat src = imread("d:/image/eight_pepper.tif', IMREAD_GRAYSCALE);
Il Apply the filters
Mat dst, dst2, dst3;
inRange(src, Scalar(0, 0, 100), Scalar(40, 30, 255), dst);
Mat element = getStructuringElement(MORPH_ELLIPSE, Size(15, 15));
dilate(dst, dst2, element);
erode(dst2, dst3, element);
/I Show the results
namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);
imshow(" ORIGINAL ", src);
namedWindow(" SEGMENTED ", WINDOW_AUTOSIZE);
imshow(" SEGMENTED ", dst);
namedWindow(" DILATION ", WINDOW _AUTOSIZE);
imshow(" DILATION ", dst2);
namedWindow(" EROSION ", WINDOW_AUTOSIZE);
imshow(" EROSION ", dst3);
waitKey();
return O;

