
Morphological Image

Processing

Dr. Mongkol Ekpanyapong

What is mathematical morphology?

• Basic principle: the extraction of geometrical

and topological information from an unknown set

(an image) through transformations using

another, well-defined, set, known as structuring

element (SE).

• In morphological image processing, the design

of SEs, their shape and size, is crucial to the

success of the morphological operations that

use them.

Preliminaries

• The language of mathematical morphology

is set theory

• Set terminology:

Let A be a set of Z2. if w(x,y) is an element

of A, we write: w  A

If w is not an element of A, we write: w  A

Fundamental concepts and operations

• Basic set operations:

– Complement

– Difference

– Translation

– Reflection

Example

Fundamental concepts and operations

• Logical equivalents of set theory operations

– Intersection ~ logical AND

– Similarly:

• Complement ~ logical NOT

• Union ~ logical OR

• Difference ~ A AND (NOT B)

FUNDAMENTAL CONCEPTS AND OPERATIONS 275

(a) (b)

(c) (d)

(e) (f)

Figure 13.1 Basic set operations: (a) set A ; (b) translation of A by x = (x1 , x2); (c) set B ; (d)

reflection of B ; (e) set A and its complement Ac ; (f) set difference (A − B).

Theequivalent expression using conventional image processing notation would be:

C (x, y) =

⇢
1 if A (x, y) and B (x, y) areboth 1

0 otherwise
(13.6)

This expression leads quite easily to a single MATLAB statement that perform the

intersection operation using the logical operator AND (&). Similarly, complement can be

obtianed using theunary NOT (~) operator, set union can beimplemented using the logical

operator OR (|) and set difference (A − B) can be expressed as (A & ~B) . Figure 13.2

showsrepresentativeresults for twobinary input images. Pleasenotethat wehavefollowed

theIPT convention, representing foreground(1-valued) pixelsaswhitepixelsagainst ablack

background.

13.2.1 The structuring element

The structuring element (SE) is the basic neighborhood structure associated with morpho-

logical image operations. It isusually represented asasmall matrix, whoseshape and size

Examples

• Logical equivalents of set theory operations

Operations

c) Ac

d) A  B

e) A  B

f) A - B

Set Operation on Images

Set operations

Set operations on Binary Images

Structure Element

• The structuring element (SE) is the basic neighborhood
structure associated with morphological image
operations.

• It is usually represented as a small matrix, whose shape
and size impact the results of applying a certain
morphological operator to an image.

• Although a structuring element can have any shape, its
implementation requires that it be converted to a
rectangular array.

– For each array, the shaded squares correspond to the
members of the SE whereas the empty squares are
used for padding, only.

Structuring Element Example

square cross

Matlab’s strel function is used to generate

SE structure, e.g., strel(‘square’,3);

Structuring Element

MORPH_RECT (0) - a rectangular structuring element:

MORPH_ELLIPSE (2) - an elliptic structuring element, that is, a filled

ellipse inscribed into the rectangle

MORPH_CROSS (1)- a cross-shaped structuring element:

CV_SHAPE_CUSTOM (100) - custom structuring element

Dilation

• The two fundamental morphological image

operations.

– Dilation: a morphological operation whose

effect is to “grow” or “thicken” objects in a

binary image.

• The extent and direction of this thickening is

controlled by the size and shape of the structuring

element.

• Mathematically:

Dilation

In words, this is the set of all displacements

z such that Bz and A are overlapped at

least by one element

Example

Example of Dilation

Example of Binary Data

OpenCV code

int main(int argc, char** argv){

Mat src = imread("d:/image/broken_text.tif",

IMREAD_GRAYSCALE);

Mat dst;

Mat element = getStructuringElement(MORPH_CROSS,

Size(3, 3));

imshow("src", src);

dilate(src, dst, element);

imshow("result", dst);

waitKey(0); //

}

An example of Dilation’s application

Erosion

• Erosion: a morphological operation whose

effect is to “shrink” or “thin” objects in a

binary image.

– The direction and extent of this thinning is

controlled by the shape and size of the

structuring element.

– Mathematically:

Erosion

In words, this is the set of all point z, such

that B, translate by z is contained in A

Example

Example of Erosion

Example of Binary Data

OpenCV

int main(int argc, char** argv){

Mat src = imread("d:/image/wirebond-mask.tif",

IMREAD_GRAYSCALE);

Mat dst;

Mat element = getStructuringElement(MORPH_ELLIPSE, Size(11,

11));

imshow("src", src);

erode(src, dst, element);

imshow("result", dst);

waitKey(0); //

}

An example of Erosion’s application

Dilation and Erosion

• Erosion and dilation are dual operations

Dilation and Erosion

• Erosion and dilation can be interpreted in

terms of whether a SE fits or hits an image

(region)

• Erosion:

• Dilation:

Opening and Closing

• We have seen, dilation expands the components

of an image and erosion shrinks them

• Opening of A by B is simply erosion of A by B

followed by the dilation of the result by B

• Closing of A by B is simply dilation of A by B

followed by the erosion of the result by B

Opening and Closing

• The opening of A by B denoted A  B is defined as

• The closing of A by B denoted A  B is defined as

Opening

 Opening: erosion followed by dilation

 Mathematically:

or:

• In OpenCV: morphologyEx(src, dst, MORPH_OPEN,

element);

Example

Opening

Opening Example

Closing

• Closing: dilation followed by erosion

• Mathematically:

• In OpenCV: morphologyEx(src, dst,

MORPH_CLOSE, element);

Closing Example

Closing Example

Closing

Opening and Closing

Comparison Opening and Closing

OpenCV Morph Operation

cv::morphologyEx to apply Morphological

Transformation such as:

Opening

Closing

Morphological Gradient

Top Hat

Black Hat

int main(int argc, char** argv){

Mat src = imread("d:/image/blobs.png", IMREAD_GRAYSCALE);

Mat dst1,dst2;

Mat element = getStructuringElement(MORPH_RECT, Size(5, 5));

imshow("src", src);

morphologyEx(src, dst1, MORPH_OPEN, element);

imshow("result1", dst1);

morphologyEx(src, dst2, MORPH_CLOSE, element);

imshow("result2", dst2);

waitKey(0); //

}

Hit or Miss Transformation

• The Hit-or-Miss transformation is to

identify specifics configuration of pixels

such as isolated foreground pixels or

pixels that are end-point of line segment

Hit or Miss Transform
• Hit-or-miss (HoM) transform: a combination of

morphological operations that uses two structuring

elements (B1 and B2) designed in such a way that the

output image will consist of all locations that match

the pixels in B1 (a hit) and that have none of the

pixels in B2 (a miss).

– Mathematically:

or:

– In OpenCV: morphologyEx(src, dst1,

MORPH_HITMISS, element);

Example

• To identify the location of cross-shape

pixels configuration:

Example using this:

Hit or Miss Example

int main(int argc, char** argv){

Mat src = imread("d:/image/hit_miss.tif",

IMREAD_GRAYSCALE);

Mat dst1, dst2;

Mat element = getStructuringElement(MORPH_RECT,

Size(5, 5));

Mat kernel = (Mat_<int>(3, 3) <<

0, 0, 0,

0, 1, 1,

0, 1, 1);

imshow("src", src);

morphologyEx(src, dst1, MORPH_HITMISS, kernel);

imshow("result1", dst1);

waitKey(0); //

}

Result

Morphological Filtering

• Morphological filters are Boolean filters

that apply a many-to-one binary (or

Boolean) function h within a window W

in the binary input image f(x,y),

producing at the output an image g(x,y)

given by:

Example
• Examples of Boolean operations (h):

– OR: equivalent to a morphological dilation with a

square SE of the same size as W.

– AND: equivalent to a morphological erosion with a

square SE of the same size as W.

– MAJ (majority): the morphological equivalent to a

median filter applicable to binary images.

Morphological filtering

• Application: noise removal

int main(int argc, char** argv){

Mat src = imread("d:/image/y_noise.tif",

IMREAD_GRAYSCALE);

Mat dst1, dst2;

Mat element = getStructuringElement(MORPH_RECT,

Size(2, 2));

morphologyEx(src, dst1, MORPH_OPEN, element);

morphologyEx(dst1, dst2, MORPH_CLOSE, element);

imshow("result1", dst2);

waitKey(0); //

}

Boundary extraction

• Internal: pixels in A that sit at the edge of A.

• External: pixels outside A that sit immediately next to A.

• Morphological gradient: combination of internal and

external boundaries.

Example

a = ones(5,12)

a (1:2,1)=0

a (1:2,9)=0

a (4:5,5)=0

b = bwperim(a,8)

Boundary Extraction

Example

Region Filling

Region/Hole Filling

• Hole filling

• At iteration Xk = Xk-1 then we fill all the

holes

Example

Example

Example

Connected Components

• Iterative procedure, similar to region

filling

Connected Components

• Let S represent a subset of pixels in an image.

Two pixels p and q are said to be connected in

S if there exists a path between them consisting

entirely of pixels in S.

• For any pixel p in S, the set of pixels that are

connected to it is called a connected component

of S.

• If it has only one connected component, the set

S is called a connected set.

4-neighbors and 8-neighbors

• Given a pixel p at coordinates(x,y), 4-

neighbors of p denoted N4(p) are (x+1,y),

(x-1,y),(x,y+1), and (x,y-1)

• The four diagonal neighbors of p denoted

ND(p) are (x+1,y+1),(x+1,y-1),(x-1,y+1),

and (x-1,y-1)

• The 8-neigbors of p are the union of N4(p)

and ND(p)

4-neighbors and 8-neighbors

Finding Connected Components

• Finding connected components

• At iteration Xk = Xk-1 then the algorithm

terminates

Example

Example

Example

Example

A = imread('circles.png');

B = bwmorph(A,'skel', Inf);

C = bwmorph(B,'spur',Inf);

D = bwmorph(A,'remove');

E = bwmorph(D,'thicken',3);

F = bwmorph(E,'thin',3);

Mat src_gray;

int thresh = 100;

int max_thresh = 255;

RNG rng(12345);

void thresh_callback(int, void*){

Mat canny_output;

vector<vector<Point> > contours;

vector<Vec4i> hierarchy;

Canny(src_gray, canny_output, thresh, thresh * 2, 3);

findContours(canny_output, contours, hierarchy, CV_RETR_TREE,

CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);

for (int i = 0; i< contours.size(); i++){

Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255),

rng.uniform(0, 255));

drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());

}

namedWindow("Contours", CV_WINDOW_AUTOSIZE);

imshow("Contours", drawing);

}

int main(int argc, char** argv){

src_gray = imread("d:/image/Test3.png", IMREAD_GRAYSCALE);

char* source_window = "Source";

namedWindow(source_window, CV_WINDOW_AUTOSIZE);

imshow(source_window, src_gray);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh,

thresh_callback);

thresh_callback(0, 0);

waitKey(0);

return(0);

}

Questions?

int main(int argc, char** argv){

Mat src = imread("d:/image/eight_pepper.tif", IMREAD_GRAYSCALE);

// Apply the filters

Mat dst, dst2, dst3;

inRange(src, Scalar(0, 0, 100), Scalar(40, 30, 255), dst);

Mat element = getStructuringElement(MORPH_ELLIPSE, Size(15, 15));

dilate(dst, dst2, element);

erode(dst2, dst3, element);

// Show the results

namedWindow(" ORIGINAL ", WINDOW_AUTOSIZE);

imshow(" ORIGINAL ", src);

namedWindow(" SEGMENTED ", WINDOW_AUTOSIZE);

imshow(" SEGMENTED ", dst);

namedWindow(" DILATION ", WINDOW_AUTOSIZE);

imshow(" DILATION ", dst2);

namedWindow(" EROSION ", WINDOW_AUTOSIZE);

imshow(" EROSION ", dst3);

waitKey();

return 0;

}

