
Numpy

Dr. Mongkol Ekpanyapong

Create Numpy Array

Numpy Operation

Numpy Shape

• Always keep track of the shape

Example
Define you own matrix: m = np.array([[0,1,2,3]])

Tensorflow

Dr. Mongkol Ekpanyapong

Tensorflow History

• Google open-sourced its machine learning

framework in 2015 under the Apache 2.0

license

• Before that, Google uses its in speech

recognition, Search, Photos, and Gmail

• A former learning system called DistBelief

is the primary influence on TensorFlow

• The library is implemented in C++ and

have both Python and C++ API

Tensorflow Features

• Automatic differentiation capabilities: you

can experiment with new networks without

having to redefine many key calculations

(esp. back-propagation)

• TensorBoard shows a flowchart of the way

data transforms, displays summary log

over time, and traces performance

TensorBoard example

Computing Inner Product

Manually:

Using Numpy:

TensorFlow Library

To call the library:

What is a tensor?

• A tensor is a generalization of a matrix that

specifies an element by an arbitrary

number

Example

• Let say you are the principle, and you

want to assign seating for all students in a

school

The school has multiple classrooms, each

classroom has a row and column. You can

specify classroom 2, row 4, column 10 as

(2,4,10) => this will be a rank-3 tensor

Tensor Representation

]

2,3,2

dimension

row

column

Tensor Representation in Python

• m1 is a list

• m2 is ndarray

In numpy

• m3 is Tensorflow

constant

Creating Tensor Constant

1 x 2

2 x 1

Output

Creating 500x500 tensors

• Initilize a 500x500 tensor with all elements

equaling 0.5

“Hello World” with TensorFlow

import tensorflow as tf

h = tf.constant(“Hello”)

w= tf.constant(“World”)

hw = h + w

with tf.Session() as sess:

ans = sess.run(hw)

print(ans)

Tensor Operations
• Arithmetic operation

• Example

Exercise

• Use TensorFlow to produce Gaussian

Distribution (also known as Normal

distribution). You can assume mean = 0

and sigma = 1

Hint:

Answer

Sessions

• A session is an environment of a software that

describes how the lines of code should run

• To execute an operation and retrieve its

calculated value, TensorFlow requires a session

• To create a session class: we use tf.Session()

command

• A session can setup how the hardware devices

will run

Example

eval() function

• Every Tensor object has an eval() function

to evaluate the mathematical operations

that define its value

• eval() requires defining a session object

for the library to understand how to use

the underlying hardware

• sess.run(..) is equivalent to invoking the

Tensor’s eval()

Interactive session mode

• It is often used for debugging, presentation

purpose

• It can be used for implicitly call to any

eval()

Example

Understanding code as a graph

• In TensorFlow graph, nodes of a graph are

operators

• Edge represents interaction between nodes

• Data flows through the arrow sign

• The system is strong type meaning the dimension

and type has to match

• The technical term is called dataflow graph

and dataflow computing

Example of Graph Representation

Dataflow graph

• Nodes/vertices represent an operation such as

arithmetic operations, or creating summaries

• Edges allow data to flow in a directed manner

• Direct dependency: when two nodes are

connected via an edge

• Indirect dependency: when two nodes are

connected via more than one edge

Example

• Node e is directly dependent on node c

• Node c is directly dependent on node a

• If we have to evaluate node e, we need

the know to compute only node a, b, and c

TensorFlow Procedure

Working with TensorFlow involves 2 main

phases:

1.Construct a Graph

2.Create Session and Execute it

Construct a Graph

• After we import TensorFlow library, a

specific empty default graph is formed

• All the new nodes that we are created are

associated with these default graph

Example

a = tf.constant(5)

b = tf.constant(2)

c = tf.constant(3)

d = tf.multiply(a,b)

e = tf.add(b,c)

f = tf.subtract(d,e)

TensorFlow Operator

TensorFlow Operator

Create Session and Execute

• As shown earlier, the session is required to run

the TensorFlow program

• The execution is through: run or eval commands

• Example of Output:

• To make sure that the resources are properly

deallocated, use sess.close

Question?

• Create a TensorFlow program for this:

Question?

• Create a TensorFlow program for this:

Session Configuration

• We can assign which hardware to run

• We can enable log file etc.

Example

• Output

The task was running in CPU

Manual Device Placement

Creates a graph.

with tf.device('/cpu:0'):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')

b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')

c = tf.matmul(a, b)

Creates a session with log_device_placement set to True.

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Runs the op.

print(sess.run(c))

Output

Device mapping:

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0,

name: Tesla K40c, pci bus

id: 0000:05:00.0

b: /job:localhost/replica:0/task:0/cpu:0

a: /job:localhost/replica:0/task:0/cpu:0

MatMul: /job:localhost/replica:0/task:0/device:GPU:0

[[22. 28.]

[49. 64.]]

Input of a Session

• Placeholder – a value that is unassigned, it will

be initialized by the Session when it is run.

Typically, it is the input/output of the model

• Variable – a value that can change such as

parameters of machine learning model

• Constant – a value that doesn’t change such as

hyper parameter

Input/Output of Session

Constructing and Managing our Graph

• To construct a new graph, we need to use tf.Graph()

command

Graph Association

• We can view the graph associated using

<node>.graph

The With statement

• In Python, we can use with statement

together with as_default() to associate

node with the graph

Fetches

• In TensorFlow, we only evaluate the node in the graph

that we want to know the result. This operation is called

fetch

• If we want to evaluate multiple nodes, a list of requested

nodes can be used

• With the fetch, we can execute only portion of the graph

Flow

• When we construct a node in the graph,

we are creating an operation instance

• These operations do not produce actual

values until the graph is executed

• This is where the name TensorFlow comes

from

Example of Graph Construction and Flow

Execution

• Pre run is graph construction, post run is

the flow execution

Data Types

• If no data type provided, TensorFlow will

select data type automatically

• User can explicitly define the data type,

he/she wants to use

Castings

• It is important to make sure data type

match throughout the graph

• Performing an operation on mismatch data

will result in exception

Support Tensor Data Types

Support Tensor Data Types

TensorFlow Name

• Each TensorFlow object has an identifying name

• This is not the same as variable name

• We can use .name attribute to see the name of

the object

• The objects with the same graph cannot have

the same name. TensorFlow will automatically

rename by adding _ and a number

• The number after the colon of the name object is

Tensor index

Example

Name Scope

• The name scope prefix can be used to add

hierarchical group

• The command tf.namescope(“prefix”) is

used

• The name scope can be helped for

graphics visualization

Example

• prefix_name is the name scoped used here

Tensor Arrays and Shapes

• TensorFlow is tightly associated with NumPy

• The array in Numpy can be converted to

TensorFlow object

• The get_shape() object can return the shape of a

tensor

TensorFlow Constant

• Can accept scalar

• Tightly integrate with Numpy library

Example

TensorFlow Variables

• Variable class represents a node whose

value changes over time

• It is also called parameters

• A machine-learning algorithm updates the

parameters of a model until it finds the

optimal value for each variable

TensorFlow Variables

• Variables in TensorFlow maintains a fixed state in the

graph

• To create variable, we call the tf.Variable() function. We

can also set the initial value

• To run the session, we have to create memory and set

its initial value using tf.global_variables_initializer()

• The Tensor variables will be computed only when

session is run

Example

Example

• Note that if we run the session again, a

new variable is created

• To reuse the variable, we have to use

tf.getvariables() instead of tf.Variable()

Example

Loading and Saving Variables

• In machine-learning, saving and loading

data at known checkpoints makes it much

easier to debug code

• restore and save commands are used

Saving variables

Loading variables

Saving Variable

(Newer TensorFlow version)
import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')

w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')

saver = tf.train.Saver([w1,w2])

sess = tf.Session()

sess.run(tf.global_variables_initializer())

saver.save(sess, './my_test_model',global_step=1000)

Load Variable

(Newer TensorFlow version)
import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')

w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')

saver = tf.train.Saver([w1,w2])

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')

new_saver.restore(sess, tf.train.latest_checkpoint('./'))

print(sess.run('w1:0'))

TensorFlow PlaceHolder

• Placeholder is used to feed in the input

value

• Placeholder can be thought as empty

variable in which data will be filled in later

• We can have Placeholder with the shape

to be any size (None for dimension)

import tensorflow as tf

import numpy as np

x_data = np.random.randn(5,10)

w_data = np.random.randn(10,1)

print("x ",x_data,"\n")

print(" w ",w_data)

x = tf.placeholder(tf.float32, shape =(5,10))

w = tf.placeholder(tf.float32, shape =(10,1))

b = tf.fill((5,1),-1.)

xw = tf.matmul(x,w)

xwb = xw + b

s = tf.reduce_max(xwb)

with tf.Session() as sess:

outs = sess.run(s,feed_dict={x:x_data,w:w_data})

print(" outs = {}".format(outs))

TensorFlow Operation

TensorFlow Application

• Moving Average: try to compute the

estimated average as a function of the

previous estimated average and the

current value

Python Code

• Compute moving average

• Setup a session

Can u write a Python code?

The complete program

Visualizing the data

• Pick up which nodes you care about

measuring by annotating with a summary

op

• Call add_summary to queue up data

TensorBoard

• Make a directory called logs

• Run TensorBoard with the location of the

logs

Output

• Open web browser: http://localhost:6006

Linear regression

• Regression model between target y and

input x

f(xi) is assumed to be linear combination of weight w and

input xi with bias b

i is the noise

• We want to find weight w and bias b

Example

Example of the output

TensorFlow Model

x = tf.placeholder(tf.float32, shape =[None, 3])

y_true = tf.placeholder(tf.float32, shape = None)

w = tf.Variable([[0,0,0]], dtype = tf.float32, name =' weights')

y_pred = tf.matmul(w, tf.transpose(x)) + b

Loss Function

• Distance metric that we discuss earlier

• The most popular one is mean square

error using this equation:

• Python code
loss = tf.reduce_mean(tf.square(y_true-y_pred))

Gradient Descent Optimization

• Gradient Descent optimization
Search for local optimization

• TensorFlow program:

optimizer = tf.train.GradientDescentOptimizer(

learning_rate)

train = optimizer.minimize(loss)

Output

Question?

• Add Tensorboard with these variables:

– Weight w

– Bias b

– Loss

Answer

import tensorflow as tf

import numpy as np

x_data = np.random.randn(2000,3)

w_real = [0.3,0.5,0.1]

b_real = -0.2

noise = np.random.randn(1,2000)*0.1

y_data = np.matmul(w_real,x_data.T) + b_real + noise

NUM_STEPS = 10

g = tf.Graph()

wb_ = []

with g.as_default():

x = tf.placeholder(tf.float32,shape=[None,3])

y_true = tf.placeholder(tf.float32,shape=None)

with tf.name_scope('inference') as scope:

w = tf.Variable([[0,0,0]],dtype=tf.float32,name='weights')

b = tf.Variable(0,dtype=tf.float32,name='bias')

y_pred = tf.matmul(w,tf.transpose(x)) + b

w0_hist = tf.summary.scalar("weight0", w[0,0])

w1_hist = tf.summary.scalar("weight1", w[0,1])

w2_hist = tf.summary.scalar("weight2", w[0,2])

b_hist = tf.summary.scalar("bias", b)

with tf.name_scope('loss') as scope:

loss = tf.reduce_mean(tf.square(y_true-y_pred))

loss_hist = tf.summary.scalar("loss", loss)

merged = tf.summary.merge_all()

writer = tf.summary.FileWriter("./logs6", sess.graph)

with tf.name_scope('train') as scope:

learning_rate = 0.5

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

train = optimizer.minimize(loss)

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

for step in range(NUM_STEPS):

summary_str,out = sess.run([merged,train],{x: x_data, y_true: y_data})

writer.add_summary(summary_str, step)

if (step % 5 == 0):

print(step, sess.run([w,b]))

wb_.append(sess.run([w,b]))

print(10, sess.run([w,b]))

Keras

Keras

• Keras library is made and maintained by

Francois Chollet

• It ran on top of Theano or TensorFlow

• It also provides many modular ANN library

Keras: Deep Learning Models

• Define the model (create a sequential

model and add layers)

• Compile the model (include optimize

function)

• Fit the model with training data (fit

function)

• Make predictions (evaluate and predict

function)

Sequential Model

• Sequential type is to add layers

For example:

Or

Dense Layer

• A dense layer is a fully connected layer

• The first argument denotes the number of

output units

• The input shape is the size of the Tensor

input e.g., 784x64

• Dense() also has an optional argument

where we can specify and add an

activation function

Learning Configurations

• The .compile() method is used to set the

learning configurations

• It has three input arguments

– The loss function

– The optimizer

– The metric function for performance

evaluation

Optimizer

• We can set the optimizer to use in Keras

• More details about optimizer will be

discussed later

Training the Model

• We use .fit() the data and set the number

of epochs and batch size

• We can also set the early stop condition

Testing the Model

• We use .evaluate() to evaluate the test

model performance

• We use .predict() to predict the real results

giving the new input

Example

from keras.models import Sequential

model = Sequential()

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

from keras import models

from keras import layers

network = models.Sequential()

network.add(layers.Dense(512,activation='relu',input_shape=(28*28,)))

network.add(layers.Dense(10,activation='softmax'))

network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['

accuracy'])

Example

train_images = train_images.reshape((60000,28*28))

train_images = train_images.astype('float32')/255

test_images = test_images.reshape((10000,28*28))

test_images = test_images.astype('float32')/255

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

network.fit(train_images,train_labels, epochs=5, batch_size=128)

test_loss, test_acc = network.evaluate(test_images, test_labels)

print('test acc',test_acc)

Testing the Result

train_images.shape

import matplotlib.pyplot as plt

plt.imshow(test_images[0])

plt.show()

class1 = network.predict_classes(test_images[0:1])

print(class1)

Questions?

