
Convolutional Neural Network

Dr. Mongkol Ekpanyapong

Fully Connected Network (FCN)

• Fully connected layers that takes in a

256x256 images and maps to 10 output

neural will have 256x256x10 = 655,360

parameters per node

• Hence, the FCN model is more complex

• FNC is tend to be more overfit

Image from Machine Learning with TensorFlow book

FCN/CNN layer Comparison

Image from Learning TensorFlow book

The Limit of Fully Connected

• Higher number of parameters

• We use information from far-away pixel

during the prediction

• Not-translation invariant

The Limit of Fully Connected

• Every input pixel is combined with every

other to produce the output results in large

number of parameters

Not-Translation Invariant

CNN

• A convolution is a weighted sum of the pixel values of

the image as the window slides across the whole image

• The difference between a fully connected layer and a

convolution layer is that the fully connected layers learn

global patterns whereas convolution layers learn local

pattern

• Convolution operates over 3D tensor called feature map

Key Characteristic of CNN

• The patterns they learn are translation

invariant (FCN is not)

• They can learn spatial hierarchies of patterns

• Also, it should learn about the filter

automatically

Image from Deep Learning with Python

CNN

• Locality and translation invariance

Convolutional Neural Networks

• CNN has just enough weights to look at a

small patch of the image

• The number of parameters are reduced to

just 5 x 5 = 25 parameters per node

Image from Machine Learning with TensorFlow book

CNN Layer Types

• Convolutional (CONV)

• Activation (ACT) e.g., RELU or SOFTMAX

• Pooling (POOL)

• Fully-connected (FC)

• Batch Normalization (BN)

• DropOut (DO)

CONV layers

• Instead of fully connected layer, we can

use convolutional layer instead

• Convolutional layer introduces the local

connectivity and reduces the number of

parameters for training

Example

• Given a grayscale image of size 256x256,

It connects to 10 output neurons, the

number of parameters is

256x256x25 = 1,638,400 for a

fully connected layer

Image from Machine Learning TensorFlow book

25

Example with CONV

• Given a grayscale image of size 256x256,

It connects to 5x5 patch, the number of

parameters is

5x5 = 25 for a

convolutional layer

Image from Machine Learning TensorFlow book

Backpropagation

• We can consider the weight/parameter of

each kernel similar to fully connected layer

as shown below in which sigma is the

activation function

• Hence, the same back propagation can be

applied in which now the convolution layer

will learn the filters to be used

Multiple Feature map

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Local Patterns in Image

• Image can be broken into local pattern

such as edges, textures

Image from Deep Learning with Python book

CNN Hyper-Parameters

• Number of convolution layers

• Convolution window size

• Convolution filter mask (Filter Depth=K)

• Number of stride

• Padding

Example of random initialized

matrices for 32 filter
• The filters to be learnt by CNN

Image from Learning TensorFlow book

K filter/Activation Map

• After we apply K filter, we get the the

volume of activation/feature map for the

next layer

• Note that the depth can be more than K,

as the input can have many channels

K

Filter Results

• We call it Feature Map or Activation Map

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Filter Result by applying on a car

Stride

• The stride is a step of sliding

of small matrix over the image

(big matrix)

• Example of image (left) and filter (right)

• Output of a convolution with 1x1 stride (left) and 2x2

stride (right)

Padding

• Padding is a technique to retain the

original image size when applying a

convolution

• In Tensorflow framework, only zero

padding is provided

• From the figure, top left

is the kernel, top right is

the image

Padding Example

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Output Size

• To guarantee, the integer output size, the

following equation can be used to check:

When W is the Image size (square)

F is the kernel size (square)

S is stride

P is the padding

Example

• Alexnet model

The image size is 227x227.

The kernel size is 11x11.

No padding.

Stride is 4.

We obtain number below which is integer

Activation Layer

• Activation function is used to introduce

non-linearity in the system

• Example of activation function

Activation Function

• RELU (Rectifier Linear Unit) and

Exponential Linear Unit (ELU)

• The Model:

INPUT => CONV => RELU => FC

Example

• RELU Activation Function

Result after Activation Function

Reduce the Input Size

There are two ways to reduce the input size

• Convolution with stride > 1

• Pooling layer

Pooling

• The pooling is a process of subsample

(shrink the image) to reduce the

computation

• There are many functions that can be

applied such as max pooling, min pooling,

mean pooling

Example

Pooling Example

• Example of pooling size using a 2x2 kernel

with a stride of 2 and no padding

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Pooling Example

Image from Learning TensorFlow book

Results after Pooling

Model with Pooling

• Example of a model with Pooling:

INPUT => CONV => RELU => POOL => FC

To POOL or CONV?

• In 2014 paper, striving for simplicity: The

ALL Convolutional Net, Springenberg et

al., propose to discard the POOL layer

entirely and use CONV layers with a larger

stride to handle downsmapling

• Now, it becomes increasingly common

trend to not use POOL

Another way of Pooling

• We can achieve good translation invariant

with non-explode weight by using

Convoluation Neural Network

Another way of pooling

• Convolution is done on many filters

automatically

• Pooling can also be used between filters

Fully Connected Layer

• It is common to use one or two FC layers

prior to applying the softmax classifier

• There is also a trend to not use FC layer

as it is computing intensive

• Model:

INPUT => CONV => RELU => POOL => FC

Batch Normalization

• It is introduced by Ioffe and Szegedy in 2015

paper, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate

Shift to add BN layer

• The idea is to normalize the data where xi is mini-

batch

• The equation is as follow:

when

Batch Normalization

• Advantage:

– Help reduce the number of epochs for training

and help for regularization

– Recommend to put wherever we can

• Drawback:

– Slow down the system

• Model:

INPUT => CONV => RELU => BN =>

POOL => FC

Dropout

• The dropout is a regularization technique

• The idea is to keep turn off some neural so

that we use many good neural nodes for

prediction (not relying only on one)

• It provides multiple redundant nodes

Dropout

• Note that we randomly add dropout only

during the training time, testing time, we

activate back all nodes

• Model:

INPUT => CONV => RELU => BN =>

POOL => FC => DO => FC => DO

Convolution on an image

• How convolution work:

Common mistake is to use kernel that are too large Image from Deep Learning with Python book

Complete CNN Architecture

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Four Important Feature for Deep Learning

• Dataset

• A Loss Function

• A Neural Network Architecture

• An optimization method

Rules of Thumb

• Common input sizes include 32x32,

64x64, 96x96, 224x224, 227x227 and

229x229

• The input layer should be divisible by two

multiple times (to use POOL)

• CONV layers should be small size such as

3x3, 5x5, or 1x1

• Large filter can be used in very first CONV

such as 7x7 and 11x11

Is CNN Translation, rotation,

and scaling invariant
• CNN is translation invariant with the help

of convolutional layer

• It is not rotation and scaling invariant

unless you let the network learn a lot of

rotation and scaling samples

Training using Keras

from keras import layers

from keras import models

from keras.datasets import cifar10

from sklearn.preprocessing import LabelBinarizer

model = models.Sequential()

model.add(layers.Conv2D(64, (5, 5), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (5, 5), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(10, activation='softmax'))

model.summary()

print("[INFO] loading CIFAR-10 data...")

((trainX, trainY), (testX, testY)) = cifar10.load_data()

trainX = trainX.astype("float") / 255.0

testX = testX.astype("float") / 255.0

lb = LabelBinarizer()

trainY = lb.fit_transform(trainY)

testY = lb.transform(testY)

initialize the label names for the CIFAR-10 dataset

labelNames = ["airplane", "automobile", "bird", "cat", "deer",

"dog", "frog", "horse", "ship", "truck"]

model.compile(optimizer='Adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

H = model.fit(trainX, trainY, validation_data=(testX, testY),

batch_size=250, epochs=100, verbose=1)

Training on Mnist-cloth
import numpy as np

import os

import sys

assert sys.version_info >= (3, 5)

Scikit-Learn ≥0.20 is required

import sklearn

import matplotlib as mpl

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow import keras

mpl.rc('axes', labelsize=14)

mpl.rc('xtick', labelsize=12)

mpl.rc('ytick', labelsize=12)

Where to save the figures

PROJECT_ROOT_DIR = "."

CHAPTER_ID = "ann"

IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images",

CHAPTER_ID)

os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png",

resolution=300):

path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)

print("Saving figure", fig_id)

if tight_layout:

plt.tight_layout()

plt.savefig(path, format=fig_extension, dpi=resolution)

tf.__version__

keras.__version__

fashion_mnist = keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()

X_train_full.shape

X_train_full.dtype

X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255.

y_valid, y_train = y_train_full[:5000], y_train_full[5000:]

X_test = X_test / 255.

plt.imshow(X_train[0], cmap="binary")

plt.axis('off')

plt.show()

y_train

class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",

"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]

class_names[y_train[0]]

X_valid.shape

X_test.shape

n_rows = 4

n_cols = 10

plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))

for row in range(n_rows):

for col in range(n_cols):

index = n_cols * row + col

plt.subplot(n_rows, n_cols, index + 1)

plt.imshow(X_train[index], cmap="binary", interpolation="nearest")

plt.axis('off')

plt.title(class_names[y_train[index]], fontsize=12)

plt.subplots_adjust(wspace=0.2, hspace=0.5)

save_fig('fashion_mnist_plot', tight_layout=False)

plt.show()

model = keras.models.Sequential()

model.add(keras.layers.Flatten(input_shape=[28, 28]))

model.add(keras.layers.Dense(300, activation="relu"))

model.add(keras.layers.Dense(100, activation="relu"))

model.add(keras.layers.Dense(10, activation="softmax"))

keras.backend.clear_session()

np.random.seed(42)

tf.set_random_seed(42)

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dense(300, activation="relu"),

keras.layers.Dense(100, activation="relu"),

keras.layers.Dense(10, activation="softmax")

])

model.layers

model.summary()

from keras.utils import plot_model

plot_model(model, "my_fashion_mnist_model.png")

hidden1 = model.layers[1]

hidden1.name

model.get_layer(hidden1.name) is hidden1

weights, biases = hidden1.get_weights()

weights

weights.shape

biases

biases.shape

model.compile(loss="sparse_categorical_crossentropy",

optimizer="sgd",

metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=30,

validation_data=(X_valid, y_valid))

history.params

print(history.epoch)

history.history.keys()

import pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))

plt.grid(True)

plt.gca().set_ylim(0, 1)

save_fig("keras_learning_curves_plot")

plt.show()

model.evaluate(X_test, y_test)

X_new = X_test[:3]

y_proba = model.predict(X_new)

y_proba.round(2)

y_pred = model.predict_classes(X_new)

y_pred

np.array(class_names)[y_pred]

y_new = y_test[:3]

y_new

plt.figure(figsize=(7.2, 2.4))

for index, image in enumerate(X_new):

plt.subplot(1, 3, index + 1)

plt.imshow(image, cmap="binary", interpolation="nearest")

plt.axis('off')

plt.title(class_names[y_test[index]], fontsize=12)

plt.subplots_adjust(wspace=0.2, hspace=0.5)

save_fig('fashion_mnist_images_plot', tight_layout=False)

plt.show()

Rules of Thumb

• We commonly use a stride of S=1, unless

we want to do use CONV instead of POOL

• Zero padding should always be applied

• At a novice, POOL is easier to use. Once,

you get enough experience, try to avoid it

• POOL should be used with max pooling

with 2x2 size and stride =2

• BN and DO should be applied if possible

Questions?

