Convolutional Neural Network

Dr. Mongkol Ekpanyapong

Fully Connected Network (FC

* Fully connected layers that takes in a
256x256 Images and maps to 10 output

neural will have 256x256x10 = 655,360
parameters per node

* Hence, the FCN model iIs more complex
 FNC Is tend to be more overfit i\

height

uuuuuuuuuuuuu

Image from Machine Learning with TensorFlow book

FCN/CNN layer Comparison =

Fully Connected Convolutional Layer

Image from Learning TensorFlow book

The Limit of Fully Connected =

* Higher number of parameters

* We use information from far-away pixel
during the prediction

 Not-translation invariant

= The Limit of Fully Connected -+
* Every input pixel is combined with every
other to produce the output results in large

number of parameters

INPUT IAGE _ OUTPUT INAGE
- I

-
A VECTOR, T NOTE: THERE'S ONE VECTORs oF WEIGHTS
oF WPUT [e PEC. OUTHIT PIXEL

PIELS | ALL INPUT PIXELS CONTRIRUTE To

EVERY OUTPUT PIXEL
WEIGHTS RELATIVE TO OuTPUT PIXEL
OVER.ALL : a%
| InAcE

[~owmar9r |

44 j 1€

lTlP«GE | 16+ _

8l weleHTS |
b

Not-Translation Invariant

5 E
PLANE _—_| ‘E ouTPuT
T OB T
T BE otE
Tlelel 4 :/ BEEE
PLAGE. (TRanSLATER) F
(cjﬁo S O i: r_]__
o4 |1 |4 ; L/,i[
olo|4]o x::i__ @»/\/
olofo]o . |
W ?/

IGHTS

[
hal

CNN

A convolution is a weighted sum of the pixel values of
the image as the window slides across the whole image

The difference between a fully connected layer and a
convolution layer is that the fully connected layers learn

global patterns whereas convolution layers learn local
pattern

Convolution operates over 3D tensor called feature map

Key Characteristic of CNN

* The patterns they learn are translation
invariant (FCN Is not)

* They can learn spatial hierarchies of patterns

* Also, it should learn about the filter
automatically ‘cat”

@ v {))

Image from Deep Learning with Python

CNN

IMAGE KERNEL | o il o | o[t o
051 oo o4 (o i | of4]e
114 (4 |o 4[4 |4 OUTPUT
o|l4]10 (0 o4 |0 k—& 2‘ /
olo |o|e [
KERUEL /v 2 (2 <\
WELGHTS p— |
-04 9-}' 0_4'0
bl i 4[4 |4

010\ ol4]|e

CCALARL BrRovvCT T

RETWEEN TRAUSLATEN SATE. KERNEL WEIGHTS
KERNEL AND IFMAGE USER ACROSS YHE IMAGE
(ZERDS OUTSINE THE KERNELY J/
b
LOCALITY TRANSLATION

INVARIAN CE

Convolutional Neural Networks =

 CNN has just enough weights to look at a
small patch of the image

* The number of parameters are reduced to
just 5 x 5 = 25 parameters per node

height

Convolution

Image from Machine Learning with TensorFlow book

E CNN Layer Types

» Convolutional (CONV)

 Activation (ACT) e.qg., RELU or SOFTMAX
* Pooling (POOL)

* Fully-connected (FC)

« Batch Normalization (BN)

* DropOut (DO)

CONYV layers

* Instead of fully connected layer, we can

use convolutional layer instead

* Convolutional layer introduces the local
connectivity and reduces the number of
parameters for training

iy

|||||

Step #1: K kemels waiting to
be applied to the image.

Step #2: Each kemel is
convolved with the input
volume.

I

Step #3: The output of each convolution
operation produces a 2D output, called
an “activation map”.

Example

* Given a grayscale image of size 256x256,

It connects to 10 output neurons, the
number of parameters Is

256x256x25 = 1,638,400 for a
fully connected layer o \

\‘O
\O

width

256 x 256 25

input neurons output neurons

Image from Machine Learning TensorFlow book

* Glven a graysca

Example with CONV

e Image of size 256x256,

It connects to 5x5 patch, the number of

parameters IS
5x5 = 25 for a
convolutional layer

height

5

256
width

256 x 256 Convolution
input neurons with 5 x 5 patch

S
N

Image from Machine Learning TensorFlow book

Backpropagation

* We can consider the weight/parameter of
each kernel similar to fully connected layer
as shown below Iin which sigma is the
activation function

4 4
o (b +Zzwl,maj+i,k+m)

* Hence, the same back propagation can be
applied in which now the convolution layer
will learn the filters to be used

g
o~ U

Multiple Feature map

Feature

[LE5T/ Map 1

/ /’/'

Vv

Filters . 7

/[~ Map1 -

Convolutional
o layer 2
—
5
A%

Convolutional
layer 1

A Mep27 - =

e b e

S)

Channels

Red
Green
Blue

Input layer

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

E Local Patterns in Image

* Image can be broken into local pattern
such as edges, textures

Image from Deep Learning with Python book

CNN Hyper-Parameters

 Number of convolution layers

* Convolution window size

» Convolution filter mask (Filter Depth=K)
 Number of stride

» Padding

= Example of random initialized |
matrices for 32 filter
* The filters to be learnt by CNN

R Tl At
HERELTE
R ER T
e B Oy e M RS

Image from Learning TensorFlow book

K filter/Activation Map

» After we apply K filter, we get the the

volume of activation/feature map for the
next layer

* Note that the depth can be more than K,
as the input can have many channels

Filter Results

* We call it Feature Map or Activation Map

Feature Feature
Map 1

AR b Map 2
ot ih.\v: 1 T IUCRRREE A,

e

= Horizontal filter

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Filter Result by applying on a car

- S S
s W S it

1311162232 | 84 | 91 | 207

Stride

« The stride is a step of sliding

157|124 2'5 14 1102|108

of small matrix over the image
(big matrix)
« Example of image (left) and filter (right)

5 ‘155‘1*6‘218‘232 249

95 | 242 | 186 | 152 | 39

39 |14 | 220 153|180 || 0|1 | O
5 247 | 212 | 54 | 46 1411
46 |77 | 133 | 110 | 74 0(1 |0

156 |35 |74 |93 | 116

« Qutput of a convolution with 1x1 stride (left) and 2x2
stride (right)

692 | -315 | -6
-680 | -194 | 305
153 | -59 | -86

692 | -6
153 | -86

Padding

* From the figure, top left

» Padding Is a technique to retain the
original image size when applying a
convolution

* In Tensorflow framework, only zero
padding Is provided

S 242

186

152

14

220 | 153

305

247

212 |54

IS the kernel, top right Is

-86

133 | 110 | 74

5 |74

93

-99

-230

176

the image

482

312

305

124

54

-86

24

543

-297

[s] e fan] Jan] o] o] o}

Padding Example

padding="VALID"
(i.e., without padding)

padding="SAME"
(i.e., with zero padding)

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Output Size

* To guarantee, the integer output size, the
following equation can be used to check:

(W —F +2P)/S)+1

When W is the Image size (square)
F is the kernel size (square)

S is stride

P is the padding

Example

* Alexnet model

The image size Is 227x227.

The kernel size i1s 11x11.

No padding.

Stride I1s 4.

We obtain number below which is integer

((227 —11+2(0))/4) +1 =55

Activation Layer

o Activation function Is used to introduce
non-linearity in the system

INPUTS

Sum = (2.000.05) + {3.0)(0.07) + (4.0}{0.09) + 0.60
= 1.27

= Activation Function

 RELU (Rectifler Linear Unit) and
Exponential Linear Unit (ELU)

U and RelU

* The Model:
=> CONV => RELU => FC

@
S 5
©
X
LL]

* RELU Activation Function

101 —

0

61

27

-37

101 ——m 250

-153

-91

-134

61

-249

250

27

Result after Activation Function

Reduce the Input Size

There are two ways to reduce the input size
« Convolution with stride > 1

* Pooling layer

Pooling

* The pooling Is a process of subsample
(shrink the image) to reduce the
computation

* There are many functions that can be
applied such as max pooling, min pooling,
mean pooling

Input

2x2 max pooling with a
stride of 1

2x2 max pooling with a
stride of 2

Y

Pooling Example

« Example of pooling size using a 2x2 kernel
with a stride of 2 and no padding

@ i o
/
/
£ h
max E -
1(5‘1] =><
A"/ VA | 2687 7 [[=></
3[2], =
<

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Pooling Example

256
height

256
width

128
height

Convolution
with 5 = 5 patch

128
width

Maxpool
with 2 x 2 patch

256 = 256
input neurons

128
height

Convolution
with 5 = 5 patch

128
width

Maxpool
with 2 x 2 patch

Image from Learning TensorFlow book

= Model with Pooling

« Example of a model with Pooling:

INPUT => CONV => RELU => POOL => FC

E To POOL or CONV?

* In 2014 paper, striving for simplicity: The
ALL Convolutional Net, Springenberg et
al., propose to discard the POOL layer
entirely and use CONV layers with a larger
stride to handle downsmapling

* Now, It becomes increasingly common
trend to not use POOL

Another way of Pooling

* We can achieve good translation invariant
with non-explode weight by using
Convoluation Neural Network

E Another way of pooling

» Convolution is done on many filters
automatically

* Pooling can also be used between filters
=

Four convolutional
kernels predicting
over the same 2

I
_HgEE O

t

The max value of each
kernel's output forms a
meaningful representation and
is passed to the next layer.

Outputs from each
of the four kernels in
each position

E Fully Connected Layer

* |t is common to use one or two FC layers
prior to applying the softmax classifier

* There is also a trend to not use FC layer
as It Is computing intensive

 Model:
INPUT => CONV => RELU => POOL => FC

Batch Normalization

 |tis introduced by loffe and Szegedy in 2015
paper, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate
Shift to add BN layer

* The idea Is to normalize the data where X; Is mini-
batch

« The equation is as follow: Xi = 5
\/cr +e

Z —pg)’

Sl=

1
Hp = 37 L% =

E Batch Normalization

* Advantage:

— Help reduce the number of epochs for training
and help for regularization

— Recommend to put wherever we can

* Drawback:
— Slow down the system

 Model:
INPUT => CONV => RELU => BN =>

Dropout

* The dropout Is a regularization technique

* The idea Is to keep turn off some neural so
that we use many good neural nodes for
prediction (not relying only on one)

* |t provides multiple redundant nodes

No Dropout Dropout (50%)

E Dropout

* Note that we randomly add dropout only
during the training time, testing time, we
activate back all nodes

 Model:

INPUT => CONV => RELU => BN =>
POOL=>FC=>DO=>FC ==DO

g

o
1)
Sae

).

U4

N
N

Y

Convolution on an image

e How convolution work:
Width_ 7 S~ et

Input Input feature map
depth
@ @ @ 3 x 3 input patches
Dot product
with kernel

Qutput
depth

Output Output feature map
depth

Common mistake is to use kernel that are too large mage from Deep Learning with Python book

Transformed patches

Complete CNN Architecture

10

Input

I

Convolution

-~

Pooling Convolution Pooling Fully connected

Image from Hands-on Machine Learning with SciKit-Learn and TensorFlow

Four Important Feature for Deep Learning—>

 Dataset

* A Loss Function

* A Neural Network Architecture
* An optimization method

H Rules of Thumb

 Common Input sizes include 32x32,
64x64, 96x96, 224x224, 227x227 and
229x229

* The input layer should be divisible by two
multiple times (to use POOL)

 CONV layers should be small size such as
3X3, 5x5, or 1x1

 Large filter can be used in very first CONV
such as 7x7 and 11x11

i

ls CNN Translation, rotation, :f
and scaling invariant

 CNN is translation invariant with the help
of convolutional layer

* |t Is not rotation and scaling invariant
unless you let the network learn a lot of
rotation and scaling samples

Max Pooling Max Pooling

Training using Keras

from keras import layers

from keras import models

from keras.datasets import cifarl0

from sklearn.preprocessing import LabelBinarizer

model = models.Sequential()

model.add(layers.Conv2D(64, (5, 5), activation='"relu’, input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (5, 5), activation='relu"))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(10, activation='softmax’))

model.summary()

print("[INFO] loading CIFAR-10 data...")

((trainX, trainY), (testX, testY)) = cifarl0.load_data()
trainX = trainX.astype("float") / 255.0

testX = testX.astype("float") / 255.0

Ib = LabelBinarizer()

trainY = Ib.fit_transform(trainy)

testY = Ib.transform(testY)

initialize the label names for the CIFAR-10 dataset

labelNames = ["airplane”, "automobile”, "bird", "cat", "deer",

"dog", "frog", "horse", "ship", "truck"]

model.compile(optimizer="Adam’,
loss='categorical_crossentropy’',
metrics=['accuracy'])

H = model.fit(trainX, trainY, validation_data=(testX, testY),
batch_size=250, epochs=100, verbose=1)

Training on Mnist-cloth

import numpy as np
import os

import sys
assert sys.version_info >= (3, 5)

Scikit-Learn 20.20 is required
import sklearn

import matplotlib as mpl
import matplotlib.pyplot as plt
import tensorflow as tf

from tensorflow import keras

mpl.rc(‘axes’, labelsize=14)
mpl.rc('xtick’, labelsize=12)
ick', labelsize=12)

Where to save the figures
PROJECT ROOT_DIR="."
CHAPTER_ID ="ann"

IMAGES PATH = os.path.join(PROJECT_ ROOT_DIR, "images",
CHAPTER_ID)

os.makedirs(IMAGES PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png",
resolution=300):

path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
iIf tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)

tf. _version
keras. version__

W gy A

fashion_mnist = keras.datasets.fashion_mnist

X_train_full.shape

X_train_full.dtype

X valid, X_train = X_train_full[:5000] / 255., X _train_full[5000:] / 255.
y valid, y _train =y train_full[:5000], y_train_full[5000:]

X test = X test/ 255.

plt.imshow(X _train[0], cmap="binary")

plt.axis('off")

plt.show()

y_train
class _names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]

class_names|y_train[0]]

X _valid.shape

X_test.shape

n_rows =4

n_cols=10

plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))

for row in range(n_rows):

for col in range(n_cols):

index = n_cols * row + col
plt.subplot(n_rows, n_cols, index + 1)
plt.imshow(X train[index], cmap="binary", interpolation="nearest")
plt.axis('off")
plt.title(class _names|y_train[index]], fontsize=12)

plt.subplots_adjust(wspace=0.2, hspace=0.5)

save_fig(‘fashion_mnist_plot', tight_layout=False)

plt.show()

model = keras.models.Sequential()

model.add(keras.layers.Flatten(input_shape=[28, 28]))

model.add(keras.layers.Dense(300, activation="relu"))

model.add(keras.layers.Dense(100, activation="relu"))

model.add(keras.layers.Dense(10, activation="softmax"))

keras.backend.clear_session()

np.random.seed(42)

tf.set_random_seed(42)

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28])),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")

)

model.layers

model.summary()

from keras.utils import plot_model

plot_model(model, "my_fashion_mnist_model.png")
hiddenl = model.layers[1]
hiddenl.name
model.get_layer(hiddenl.name) is hiddenl
weights, biases = hiddenl.get_weights()
weights
weights.shape
biases
biases.shape
model.compile(loss="sparse_categorical crossentropy",
optimizer="sgd",
metrics=["accuracy"])
history = model.fit(X train, y_train, epochs=30,
validation_data=(X_valid, y_valid))
history.params
print(history.epoch)
history.history.keys()
impe#t pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)

plt.gca().set_ylim(0, 1)

save fig("keras_learning_curves_ plot")
plt.show()

model.evaluate(X test, y test)

X_new = X _test[:3]

y_proba = model.predict(X_new)
y_proba.round(2)

y_pred = model.predict_classes(X_new)
y_ pred

np.array(class _names)[y_pred]

y _new =Yy test[:3]

y_new

plt.figure(figsize=(7.2, 2.4))
for index, image in enumerate(X_new):

plt.subplot(1, 3, index + 1)

plt.imshow(image, cmap="binary", interpolation="nearest")

plt.axis('off")

plt.title(class_names|y_test[index]], fontsize=12)
plt.subplots adjust(wspace=0.2, hspace=0.5)
save_fig(‘fashion_mnist_images_plot', tight_layout=False)
plt.show()

H Rules of Thumb

 We commonly use a stride of S=1, unless
we want to do use CONYV instead of POOL

« Zero padding should always be applied

* At a novice, POOL Is easier to use. Once,
you get enough experience, try to avoid it

 POOL should be used with max pooling
with 2x2 size and stride =2

BN and DO should be applied if possible

-
2
-
o

—
v)
D
)

o

