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A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)

• Had crazy idea (1807):

– Any periodic function 

can be rewritten as a 

weighted sum of sines

and cosines of different 

frequencies. 

• Don’t believe it?  

– Neither did Lagrange, 

Laplace, Poisson and 

other big wigs

– Not translated into 

English until 1878!

• But it’s true!

– Called Fourier Series



Born: 21 March 1768 in Auxerre, Bourgogne, France

Died: 16 May 1830 in Paris, France 

Joseph Fourier

Joseph’s father was a tailor in Auxerre

Joseph was the ninth of twelve children

His mother died when he was nine and

his father died the following year  

Fourier demonstrated talent on math

at the age of 14.

In 1787 Fourier decided to train for 

the priesthood - a religious life or a 

mathematical life?

In 1793, Fourier joined the local 

Revolutionary Committee   



Fourier’s “Controversy” Work

• Fourier did his important mathematical 

work on the theory of heat (highly 

regarded memoir On the Propagation of 

Heat in Solid Bodies ) from 1804 to 1807

• This memoir received objection from 

Fourier’s mentors (Laplace and Lagrange) 

and not able to be published until 1815

Napoleon awarded him a pension of 6000 francs, payable from 1 July, 1815. 

However Napoleon was defeated on 1 July and Fourier did not receive any money



Fourier Domain
• Expresses an image as the sum of weighted sinusoids

– Wavelengths are determined by image dimensions

– Amplitudes are determined by sample values

• Fourier coefficients are complex rather than real values

• Given a one-dimensional sequence f of N samples, the 

one dimensional discrete Fourier transform is given as

– N is the length of a row and hence u is in [0, N-1]



Complex complexities

• The symbol j denotes the imaginary unit

– j satisfies the relation j2 = 1

• Usually written more compactly by using 
Euler’s formula



Forward and Inverse



Fourier Pairs  (from Szeliski)



Fourier Transform smoothing pairs



Fourier Transform Sampling Pairs
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- Linearity

- Time-invariant property
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Linear convolution

1D Linear Filtering

See review section
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Filter Examples 
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Low-pass (LP)

h(n)=[1,1]

|H(w)|=2cos(w/2)

High-pass (LP)

h(n)=[1,-1]

|H(w)|=2sin(w/2)



2D DFT



2D DFT

• Each DFT coefficient is a complex value

– There is a single DFT coefficient for each spatial 

sample

– A complex value is expressed by two real values in 

either Cartesian or polar coordinate space.

• Cartesian: R(u,v) is the real and I(u, v) the 

imaginary component

• Polar: |F(u,v)| is the magnitude and phi(u,v) the 

phase



2D DFT

• Representing the DFT coefficients as magnitude and 

phase is a more useful for processing and reasoning.

– The magnitude is a measure of strength or length

– The phase is a direction and lies in [-pi, +pi]

• The magnitude and phase are easily obtained from the 

real and imaginary values



Magnitude Spectrum and Phase 

Spectrum



Magnitude Spectrum and Phase Spectrum

• Notes on the magnitude spectrum:

– Magnitudes are generally referred to as the 
“spectrum” but this should be understood as the 
magnitude spectrum.

– Typically has an extremely large dynamic range 
and it is typical to log-compress those values for 
display (as in the previous slide)

– For presentation, the DC component, F(0,0), is 
placed at the center.  Low frequency components 
are shown near the center and frequency 
increases with distance from center. 



Magnitude Spectrum and Phase Spectrum

• The magnitude spectrum contains information about the 
shape of objects.  A strong edge in the source will generate a 
strong edge in the magnitude spectrum (rotated 90 degrees)

• The phase spectrum contains information about their actual 
location in the source.  An image of lots of ‘Q’s will have the 
same magnitude specta but not the same phase spectra.



Magnitude Spectrum and Phase Spectrum



DFT Example
• Given a row profile, compute the Fourier 

coefficients

Index 0 1 2 3 4 5 6 7

Value 20 12 18 56 83 10 104 114



Translation, Rotation, Distributivity

• Translation of the source will cause the phase spectrum 

to change but leave the magnitude spectrum unchanged 

since the phase spectrum encodes location information 

while the magnitude spectrum encodes shape 

information.

• Rotation of the source corresponds to an identical 

rotation of the magnitude and phase spectra.

• Distributivity. The Fourier transform is distributive over 

addition (not multiplication):



Translation, Rotation, Distributivity



Fourier Transform Properties

• Rotation: if an image is rotated by a 

certain angle, its 2D FT will be rotated by 

the same angle.



Extension to 2D

In matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

imagesc Scale data and display as image to use full color map



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Examples

B.K. Gunturk

Magnitudes are shown



Examples

B.K. Gunturk



Example use: Smoothing/Blurring
• We want a smoothed function of  f(x)
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H(u) attenuates high frequencies in F(u) (Low-pass Filter)!
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

( or  |F(u,v)| )



Low and High Pass filtering

Ringing



Properties of Fourier Transform
Spatial Domain (x) Frequency Domain (u)
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Periodicity

• The DFT is periodic

– Sinusoids have infinite, repeating extent and so the DFT ‘image’ is 

infinite and repeated (tiled)

• While this property of the DFT may initially seem to be of little 

consequence, it carries important implications. 

– Since the source image wraps around itself, the source image will 

appear to have edges where no edges actually exist.

– For example, the left side of an image is bright and the right side is dark, 

there will be a false edge created when the image is tiled since the 

brightness of the left side is placed adjacent to the darkness of the right 

side. 

– These artificial edges will then be reflected in the amplitude spectrum 

and give a false characterization of the power spectrum of the source 

image.



Example



Windowing

• Windowing is a technique to minimize the artificial 

distortions injected into the spectrum of an image due to 

tiling discontinuities. 

• Windowing is an image processing filter that is applied 

prior to conversion into the Fourier domain and an 

inverse windowing filter must be applied when recovery 

of the source image is desired from the DFT coefficients.

• Windowing forces continuity (or near continuity) at tile 

edges.  Smoothly force the samples to be zero (or near 

zero) at the image edges by scaling image samples.



Windowing
• Windowing is multiplication

– Each sample is multiplied by a windowing function

– Windowing function is parameterized on distance 

from center

– Windowing function is unity at the center and falls to 

zero at image borders

• Choose a windowing function

– Bartlett

– Hanning

– Blackman

– Hamming



Windowing Functions
• The Bartlett window is a cone

– Discontinuous at edges and center

– Computationally simple

• Hanning window

– Continuous



Bartlett
• Blackman window

– Continuous

– Steeper dropoff than Hanning

• Hamming (not Hanning) window

– Discontinuous at edges

– Steeper dropoff than Hanning



Common Windowing Functions



Effect of Windowing on Amplitude Spectrum



Frequency Domain Filtering

• Images can be processed in either the 
spatial or frequency domain

– Spatial domain filters have already been 
discussed

– Frequency domain filters can achieve the 
same results by altering the DFT coefficients 
directly

– Frequency domain filtering can be 
generalized as the multiplication of the 
spectrum F of an image by a transfer function 
H. 



Frequency Domain Filtering

• Recall that the DFT coefficients are 

complex-valued.

– Multiplication of F with H will possibly change 

both the amplitude and phase spectrum

– In practice, however, most frequency domain 

filters are zero-phase.  This means that the 

phase spectrum is not changed; only the 

amplitude spectrum is changed.



Convolution

• Convolution in the spatial domain corresponds to 

multiplication in the Fourier domain.

• This has strong computational implications

– Recall that convolution of an NxN image with MxM

kernel is O(M2N2) in the spatial domain.

– What is the performance in the Fourier domain?

• O(N2)



Convolution
• Convolution of an image f with kernel h can be 

performed using point-by-point multiplication

• This may seem inefficient since the DFT must be 

computed twice (forward and inverse).

– The brute-force technique is O(n^4)

– The FFT technique (presented later) is O(NLogN)
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2D Filtering=Two Sequential 

1D Filtering

• Just as we have observed with 2D 

transform, 2D (separable) filtering can 

be viewed as two sequential 1D filtering 

operations: one along row direction and 

the other along column direction

• The order of filtering does not matter

)()()()(),( 1111 mhnhnhmhnmh 
h1 : 1D filter
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Numerical Example

h1(m)=[1,1], h1(n)=[1,-1]1D filter
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MATLAB command: 

>h1=[1,1];h2=[1,-1];

>conv2(h1,h2)

>conv2(h2,h1)
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Fourier Series (2D case)
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Note that the input signal is discrete

while its FT is a continuous function
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spatial-domain convolution
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frequency-domain multiplication
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Filter Examples 

Low-pass (LP)

h1(n)=[1,1]

|H1(w)|=2cos(w/2)

1D

h(n)=[1,1;1,1]

|H(w1,w2)|=4cos(w1/2)cos(w2/2)

2D

w1

w2

|H(w1,w2)|
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Image DFT Example

Original ray image X choice 1: Y=fft2(X)
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Image DFT Example (Con’t)

choice 1: Y=fft2(X) choice 2: Y=fftshift(fft2(X))
Low-frequency at the centerLow-frequency at four corners

FFTSHIFT Shift zero-frequency component to center of spectrum.



Frequency Domain Operation



Mathematical Foundation

• Transform:  a mathematical tool that 

allows the conversion of a set of values to 

another set of values, creating a new way 

of representing the same information

• Some tasks are best performed by 

applying selected algorithm in the 

transformed domain



Mathematical Foundation



Output



Example of Image and FT



Filtering in Frequency Domain

• The relation between spatial domain 

convolution and frequency domain filtering

• And vice versa



Low Pass Filter

• Low-pass filters attenuate the high 

frequency components of the Fourier 

Transform of an image, while leaving the 

low frequency components unchanged

• The typical overall effect of applying a low-

pass filter to an image is a controlled 

degree of blurring



Example of LPF for smoothing 

of false contours



Example of LPF for smoothing 

of false contours



Ideal LPF



Ideal LPF

b) radi 8

c) radi 16

d) radi 32

e) radi 64

f) radi 128



Gaussian LPF



Gaussian LPF

b) sigma = 5

c) sigma = 10

d) sigma = 20

e) sigma = 30

f) sigma = 75



Butterworth LPF



Butterworth LPF

b) radi 8

c) radi 16

d) radi 32

e) radi 64

f) radi 128



Frequency Domain 

Low Pass Filter



Output



Basic Step in DFT Filtering

1. Obtain the padding parameters

2. Obtain Fourier Transform with padding

3. Generate a filter function H

4. Multiply the transform with the filter

5. Obtain the real part of the inverse FFT

6. Crop the top left rectangle to the original 

size



Frequency Domain Filtering 

Basic Step



Example Image



Low Pass Filtering
• Low pass filtering is convolution.  It attenuates high frequency 

components of an image while leaving low frequency components 

intact. 

• Low pass filtering can be naturally accomplished in the frequency 

domain since the frequency components are explicitly isolated in the 

spectrum.

• The DFT coefficients correspond to frequency components of the 

source and that their frequency increases with increasing distance 

from the center of the shifted spectrum. 

– Low pass filtering is then accomplished by zeroing the amplitude 

of the high frequency DFT coefficients.  Determining which DFT 

coefficients should be zeroed amounts to determining how far 

the coefficients is from the center of the shifted spectrum. 

– Typically, a threshold radius is chosen such that all DFT 

coefficients outside of this threshold radius have their magnitude 

set to zero while all DFT coefficients falling inside of the 

threshold are unchanged (passed through).



Low Pass Filtering

• Representing low pass filtering as multiplication of DFT 

coefficients, we must identify a transfer function (H) that 

corresponds to setting high-frequency components to 

zero.

• An “ideal” low pass filter is given in 9.23 where rc is the 

cutoff frequency.
– The term ideal as it is used of an ideal low pass filter should not be 

taken to mean that this filter is optimal for low pass filtering. 

– An ideal low pass filter is ideal in the sense that it has an exact cutoff 

above which all terms are exactly zero and below which all terms are 

set to unity. 



Ideal low pass filter



Ideal Low-Pass filtering example



Low Pass Filtering
• Butterworth filter is a low-pass filter with smooth 

edges such that there is no (or minimal) ringing in 
the spatial domain

– Parameterized on “order” – defines the sharpness of 
the filter

– N is the order of the filter. Larger N represent stronger 
cutoffs

– Rc is the cutoff frequency.  Smaller Rc is stronger blur



Butterworth Filters



Ideal vs. Butterworth (5th order)



Gaussian low pass filter

• Other well-known frequency domain low pass 
filters include the Chebyshev and the 
Gaussian transfer functions. 
– The Gaussian low pass filter has the very 

interesting property of having the same form in 
both the Fourier and spatial domains. In other 
words, the DFT of a Gaussian function is itself a 
Gaussian function. 

– A Gaussian low pass filter introduces no ringing 
when applied either in the spatial or frequency 
domains. The Gaussian transfer function is given 
as



High-pass and band-pass filtering

• High pass attenuates low frequency 

components while leaving high frequency 

components intact.

• The technique for performing high pass 

filtering is identical to that of low-pass 

filtering; however, the transfer functions 

are inverses to the low pass functions.



High Pass
• Ideal – Butterworth - Gaussian



High Pass Filter



Result



Result2



Ideal High-Pass Filter



Gaussian High Pass Filter



Butterworth High Pass Filter



High Frequency Emphasis

a) ori b) horizontal edge c) high pass



Filter Example



Low Pass Filter



High-pass Filter



Output



Band-pass filtering

• Laplacian Pyramid (subband images)

• Created from Gaussian pyramid by 

subtraction

Gaussian Pyramid (low-pass images)



Band Filters

• Low pass filtering is useful for reducing noise but may produce an 
image that is overly blurry. 

• High pass filtering is useful for sharpening edges but also 
accentuates image noise. 

• Band filtering seeks to retain the benefits of these techniques while 
reducing their undesirable properties. 

• Band filtering isolates the mid-range frequencies from both the low-
range and high-range frequencies.  
– A band stop (or notch) filter attenuates mid-level frequencies while 

leaving the high and low frequencies unaltered. 

– A band pass filter is the inverse of a band stop; leaving the mid-level 
frequencies unaltered while attenuating the low and high frequencies in 
the image. 

• A band of frequencies may be specified by giving the center 
frequency and the width of the band. The band width determines the 
range of frequencies that are included in the band.



Band filters

• A band stop filter is essentially a combination of 

a low and high pass filter, which implies that 

ideal, Butterworth, and Gaussian band stop 

filters can be defined.

• Equation 9.29 is the Butterworth band pass 

while Equation 9.30 is the Butterworth band 

stop.



Band pass and band stop
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1 Dimensional 

Inverse Col by Col
Partially

Transformed
(2D Complex)

Separability

The  Fourier Transform is separable. We can compute the 2d DFT (and 

inverse) by repeated applications of the 1D DFT

Spatial

Image
(2D Ints)

Partially

Transformed
(2D Complex)

Fully

Transformed
(2D Complex)

1 Dimensional

Row by Row

1 Dimensional

Col by Col

1 Dimensional

Inverse Row by Row



int main(int argc, char** argv){

Mat A = imread("d:/image/cameraman2.tif", IMREAD_GRAYSCALE);

Size patchSize(100, 100);

Point topleft(A.cols / 2, A.rows / 2);

Rect roi(topleft.x, topleft.y, patchSize.width, patchSize.height);

Mat B = A(roi);

int dft_M = getOptimalDFTSize(A.rows + B.rows - 1);

int dft_N = getOptimalDFTSize(A.cols + B.cols - 1);

Mat dft_A = cv::Mat::zeros(dft_M, dft_N, CV_32F); 

Mat dft_B = cv::Mat::zeros(dft_M, dft_N, CV_32F);

Mat dft_A_part = dft_A(Rect(0, 0, A.cols, A.rows));

Mat dft_B_part = dft_B(Rect(0, 0, B.cols, B.rows));

A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);

B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);

dft(dft_A, dft_A, 0, A.rows);

dft(dft_B, dft_B, 0, B.rows);

mulSpectrums(dft_A, dft_B, dft_A, 0, true);

idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1);

Mat corr = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));

normalize(corr, corr, 0, 1, NORM_MINMAX, corr.type());

pow(corr, 3., corr);

B ^= cv::Scalar::all(255);

imshow("Image", A);

imshow("Correlation", corr);

waitKey();

return 0;

}



Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

• In computer graphics, a mip map [Williams, 1983]

• A precursor to wavelet transform

S. Seitz



Laplacian Pyramid

• How can we reconstruct (collapse) this 

pyramid into the original image?

Need this!

Original

image



What can you do with band limited 

imaged?



Apples and Oranges in bandpass

L0

L2

L4

Reconstructed



Applications of Fourier 

Transform
• Physics

– Solve linear PDEs (heat conduction, Laplace, 

wave propagation)

• Antenna design

– Seismic arrays, side scan sonar, GPS, SAR

• Signal processing

– 1D: speech analysis, enhancement …

– 2D: image restoration, enhancement …



Not Just for EE

• Just like Calculus invented by Newton, 

Fourier analysis is another mathematical 

tool

• BIOM: fake iris detection

• CS: anti-aliasing in computer graphics

• CpE: hardware and software systems



FT in Biometrics

natural fake



FT in CS

Anti-aliasing in 3D graphic display



Image half-sizing

This image is too big to

fit on the screen.  How

can we reduce it?

How to generate a half-

sized version?

S. Seitz



Image sub-sampling

Throw away every other row and 

column to create a 1/2 size image

- called image sub-sampling

1/4

1/8

S. Seitz



Image sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)

Aliasing!  What do we do?

1/2

S. Seitz



Gaussian (lowpass) pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why? S. Seitz



Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

S. Seitz



Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2

S. Seitz



Questions?


