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A nice set of basis

Teases away fast vs. slow changes in the image.




 Had crazy idea (1807):

— Any periodic function
can be rewritten as a
weighted sum of sines
and cosines of different
frequencies.

« Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

« PButit's true!
— Called Fourier Series




Joseph Fourier

Joseph’s father was a tailor in Auxerre
Joseph was the ninth of twelve children
His mother died when he was nine and
his father died the following year

Fourier demonstrated talent on math
at the age of 14.

In 1787 Fourier decided to train for
the priesthood - a religious life or a
mathematical life?

In 1793, Fourier joined the local
Revolutionary Committee

Born: 21 March 1768 in Auxerre, Bourgogne, France
Died: 16 May 1830 in Paris, France




Fourier's “Controversy” Work "+

* Fourier did his important mathematical
work on the theory of heat (highly
regarded memoir On the Propagation of
Heat In Solid Bodies ) from 1804 to 1807

* This memoir received objection from

Fourier's mentors (Laplace and Lagrange)
and not able to be published until 1815

Napoleon awarded him a pension of 6000 francs, payable from 1 July, 1815.
However Napoleon was defeated on 1 July and Fourier did not receive any money




Fourier Domain

« Expresses an image as the sum of weighted sinusoids
— Wavelengths are determined by image dimensions
— Amplitudes are determined by sample values

« Fourier coefficients are complex rather than real values

« Given a one-dimensional sequence f of N samples, the
one dimensional discrete Fourier transform is given as

| 2UX 2mUX
T () = ﬁ;f(x) [cos( N )—]sm( N )

— N is the length of a row and hence u is in [0, N-1]




* The symbol | denotes the imaginary unit
— | satisfies the relation §2 = 1

cos(x) — jsin(x) = €7, 9.11)

« Usually written more compactly by using
Euler’'s formula
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Forward and Inverse
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Fourier Pairs (from Szeliski)

Name Signal Transform
impulse ' d(z) = 1
shifted .' 5z — u) i .
lmPUIse g . = e " ——
.
box filter | l. | box[:;p‘,fa.} = asinc(aw} A I N
tent tent(z/a) o= asinc®(aw) |/
Gaussian =~ _ I_ . G(x: o) & @G{WJU_I} . )
Laplacian (I—j — )G(z:0) —EMQG(M;U_IJ .
of Gaussian === 7 7 ' = 7 ' —
Gabor il . cos(woz)G(z;0) @G(m +wg;ot)
mask —_— —vG(z;0) = @G(w; o~ 1) N
windowed rcof.{fr.j{au«‘ ) o (see Figure 3.29) '
sinc = sinc(xz/a) ——




Fourier Transform smoothing pairs

Spatial domain
f(z)
sbox(x)
X
4 gauss(x; )
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Frequency domain
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Fourier Transform Sampling Pairs

Comb function
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1D Linear Filtering

fny ——h(n)—— 9

See review section

g(n) = ih(k)f(n—k):h(n)@) £(n) = £ (m) ®@h(n)

k:—OO l
Linear convolution

- Linearity & f(n)+a,1,(n) —a,9,(n)+a,g,(n)

- Time-invariant property f(n—n,) > g(n—n,)
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Low-pass (LP)

h(n)=[1,1]

|

|H(w)|=2cos(w/2)

High-pass (LP)

h(n)=[1,-1]

|

IH(w)|=2sin(w/2)

Filter Examples

[H(W)]
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N—-1N-1
2,
x=0 y=0

f(x, y)e—jZfr(ux+ vy)/N

?(M, V)ejZN(ux+vy)/N




2D DFT

« Each DFT coefficient is a complex value

— There is a single DFT coefficient for each spatial
sample

— A complex value is expressed by two real values in
either Cartesian or polar coordinate space.

« Cartesian: R(u,v) is the real and I(u, v) the
Imaginary component

 Polar: |F(u,v)| is the magnitude and phi(u,v) the
phase

F(u,v) = R(u,v) + jl(u,v)

L6 (u.v)

F(u,v) = |F(u,v)




2D DFT

* Representing the DFT coefficients as magnitude and
phase is a more useful for processing and reasoning.

— The magnitude is a measure of strength or length
— The phase is a direction and lies in [-pi, +pi]

« The magnitude and phase are easily obtained from the
real and imaginary values

Flu,v)| = /R*(u,v) + I*(u,v)
T (u.v)
o(u,v) = tan” 1 _ R((i l{ w)) |




Magnitude Spectrum and Ph
Spectrum

(a) Source image f. (b) Amplitude spectrum, |F|. (c) Phase spectrum, ¢.

Figure 9.7. DFT Spectrum.




Magnitude Spectrum and Phase Spectru =

* Notes on the magnitude spectrum:

— Magnitudes are generally referred to as the
“spectrum” but this should be understood as the
magnitude spectrum.

— Typically has an extremely large dynamic range
and it is typical to log-compress those values for
display (as in the previous slide)

— For presentation, the DC component, F(0,0), is
placed at the center. Low frequency components
are shown near the center and frequency
Increases with distance from center.




Magnitude Spectrum and Phase Spectrum 3

« The magnitude spectrum contains information about the
shape of objects. A strong edge in the source will generate a
strong edge in the magnitude spectrum (rotated 90 degrees)

« The phase spectrum contains information about their actual
location in the source. An image of lots of ‘Q’s will have the
same magnitude specta but not the same phase spectra.

Q%a
X QQ

Figure 9.9. Illustration of DFT properties.




Magnitude Spectrum and Ph

(@) Reconstructed from phase information only.  (b) Reconstruction from amplitude information only.

Figure 9.8. Comparison of the contribution of the amplitude and phase spectrum.




DFT Example

* Given a row profile, compute the Fourier
coefficients

20 12 18 56 83 10 104 | 114




Translation, Rotation, Distributivity

« Translation of the source will cause the phase spectrum
to change but leave the magnitude spectrum unchanged
since the phase spectrum encodes location information

while the magnitude spectrum encodes shape
iInformation.

* Rotation of the source corresponds to an identical
rotation of the magnitude and phase spectra.

* Distributivity. The Fourier transform is distributive over
addition (not multiplication):

F(f+9)=F(f)+F(g)




(@) Source image.  (b) Translation. (c) Rotation. (d) Linearity.

Figure 9.10. Properties of the DFT under translation, rotation, and linear combination.




E Fourier Transform Properties ™+

« Rotation: if an image is rotated by a
certain angle, its 2D FT will be rotated by
the same angle.




Extension to




Fourier analysis in Images

%

Intensity Image

Fourier Image

14 il
] ]

http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering




Signals can be composed

H H =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.htmi
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« We want a smoothed function of f(x)
9(x)= f(x)*h(x)

* Let us use a Gaussian kernel

Example use: Smoothing/Blurring

/W\Jmf::sy o

J[\'F(x’

K

H(u)4

e

u




(or [F(uv)])

h(x,y) [H(s,s,) |

[G(s,s,) |
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Properties of Fourier Transform

Spatial Domain (x) Frequency Domain (u)
Linearity c.f(x)+c,gx) | ¢F(u)+c,Gu)
Scaling f (ax) i é F(%j
Shifting f(x—X,) i e "™ F(u)
Symmetry F(X) i f (— u)
Conjugation f*(x) i F*(—u)
Convolution f(X)* g(x) i F(U)G(U)
Differentiation d :jf EX) i (i27zu )n F(u)

X |




Periodicity

« The DFT is periodic

— Sinusoids have infinite, repeating extent and so the DFT ‘image’ is
infinite and repeated (tiled)

F(u,v) =F(u+ M,v)=F(u,v+ N)=F(u+ M,v+ N), (9.16)

* While this property of the DFT may initially seem to be of little
conseqguence, it carries important implications.

— Since the source image wraps around itself, the source image will
appear to have edges where no edges actually exist.

— For example, the left side of an image is bright and the right side is dark,
there will be a false edge created when the image is tiled since the
brightness of the left side is placed adjacent to the darkness of the right
side.

— These artificial edges will then be reflected in the amplitude spectrum
and give a false characterization of the power spectrum of the source




(@) Tiled source. (b) Amplitude spectrum of the source.

Figure 9.11. Periodicity effects of the DFT.




Windowing

« Windowing is a technique to minimize the artificial
distortions injected into the spectrum of an image due to
tiling discontinuities.

« Windowing is an image processing filter that is applied
prior to conversion into the Fourier domain and an
Inverse windowing filter must be applied when recovery
of the source image is desired from the DFT coefficients.

« Windowing forces continuity (or near continuity) at tile
edges. Smoothly force the samples to be zero (or near
zero) at the image edges by scaling image samples.




Windowing
* Windowing is multiplication
— Each sample is multiplied by a windowing function

— Windowing function is parameterized on distance
from center

— Windowing function is unity at the center and falls to
zero at image borders

« Choose a windowing function
— Bartlett
— Hanning
— Blackman
— Hamming




Windowing Functions

* The Bartlett window Is a cone
— Discontinuous at edges and center
— Computationally simple

r . )
W(}’) — 1 B Fmax / S }m({x
O r > rmax

* Hanning window
— Continuous

1 1 r
wlr)=—— —cos |7l —
0(r) = 5 = yoos (1= =)

max




Bartlett

 Blackman window
— Continuous
— Steeper dropoff than Hanning

T T
)] + .08 cos [2?r (1 — )]
I'max I'max

« Hamming (not Hanning) window
— Discontinuous at edges
— Steeper dropoff than Hanning

1
w(r) = .42 — 5 €08 [?r (1 -

w(r) = 0.53836 + 0.46164 cos (ﬁ : )

I'max




(b) Hanning Window.

(a) Bartlett Window.

(c) Hamming Window.

(c) Blackman Window.

Figure 9.12. Normalized windowing functions covering a 1 x 1 region.

= M



(@) Tiled source. (b) Amplitude spectrum of the source.

Figure 9.13. The effect of windowing on the spectrum.




Frequency Domain Filtering ¥ =

* Images can be processed In either the
spatial or frequency domain

— Spatial domain filters have already been
discussed

— Frequency domain filters can achieve the
same results by altering the DFT coefficients
directly

— Frequency domain filtering can be
generalized as the multiplication of the
spectrum F of an image by a transfer function

= F(u,v) - H(u,v), (9.21)




Frequency Domain Filtering *+*

 Recall that the DFT coefficients are
complex-valued.

— Multiplication of F with H will possibly change
both the amplitude and phase spectrum

— In practice, however, most frequency domain
filters are zero-phase. This means that the
phase spectrum is not changed; only the
amplitude spectrum is changed.

G(u,v) = F(u,v) - H(u,v), (9.21)




Convolution

« Convolution in the spatial domain corresponds to
multiplication in the Fourier domain.

fohe F - H

« This has strong computational implications

— Recall that convolution of an NxN image with MxM
kernel is O(M2N?) in the spatial domain.

— What is the performance in the Fourier domain?
° O(NZ)




Convolution

« Convolution of an image f with kernel h can be
performed using point-by-point multiplication

. Compute the DFT coefficients of f to obtain
2. Compute the DFT coefficients of / to obtain H

3. Compute the product of these two transforms to obtain F - H

4. Compute the inverse DFT of the product to obtain F - (F - H)

« This may seem inefficient since the DFT must be
computed twice (forward and inverse).

— The brute-force technique is O(n"4)

— The FFT technique (presented later) is O(NLogN)

K Ay
z LA,




2D Filtering=Two Sequentiak
1D Filtering

« Just as we have observed with 2D
transform, 2D (separable) filtering can
be viewed as two sequential 1D filtering
operations: one along row direction and
the other along column direction

* The order of filtering does not matter
h(m,n) =h*(m) ®h'(n) =h'(n) ®h*(m)

ht: 1D filter

46




Numerical Example

1D filter hi(m)=[1,1], hi(n)=[1,-1]

N

ht(m) ® ht(n) h(n) ® h'(m)

g TR (P

MATLAB command:
>h1=[1,1];h2=[1,-1];
>conv2(h1,h2)
>conv2(h2,h1)

47



Fourier Series (2D case)

F(w, w,) = i i f (m, n)e Jtvam+ven)

M=—0o0 N=—00
spatial-domain convolution frequency-domain multiplication
f(m,n)®h(m,n) F(w, w,)H (w,, w,)

Note that the input signal is discrete
while its FT is a continuous function

48




Filter Examples

[H(wy,wW,)]|

Low-pass (LP)

h(n)=[1,1]
1D l
|[H1(w)|=2cos(w/2)
!
h(n)=[1,1;1,1]
2D l
W5
|H(w,,w,)|=4cos(w,/2)cos(w,/2) W,

49




Image DFT EXamp|e

17 el
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choice 1: Y=fft2(X)  choice 2: Y=Fftshift(FFt2(X))

Low-frequency at four corners Low-frequency at the center

FFTSHIFT Shift zero-frequency component to center of spectrum.

51




o Foumer
Input _m_i.:’;E Transform
i‘ *.Il._ll _I I-FT:I

Filtar's freguancy
raseponsEa
H{wv)

Inversa Fourier
Transhormm
{FT}

Cwdput image
mx )




Mathematical Foundation

* Transform: a mathematical tool that
allows the conversion of a set of values to
another set of values, creating a new way
of representing the same information

« Some tasks are best performed by
applying selected algorithm in the
transformed domain




d

Spatial
domain

)
RT{uv)) Inversa iy
Transform ® Transtorm *
R Spatial
— ey’ | domain

Transform domain

A




Output
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cde

FIGURE 4.3 (a) Image. (b) Fourier spectrum. (¢) Centered spectrum. (d) Spectrum visually enhanced by a log
transformation. (e) Phase angle image.
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Filtering in Frequency Domai

* The relation between spatial domain
convolution and frequency domain filtering

Fle, vl=hlh v]e Hiwv)Flu v

 And vice versa

flx, vik(i, v} = Hw, o) * Glu, v)




* Low-pass filters attenuate the high
frequency components of the Fourier
Transform of an image, while leaving the
low frequency components unchanged

* The typical overall effect of applying a low-
pass filter to an image Is a controlled
degree of blurring

Low Pass Filter




Example of LPF for smoothing™
of false contours

» Example of LPF for smoothing of false contours




Example of LPF for smoothing™
of false contours

» Example of LPF for n01se reductlon

“.*




(0, 1 |1 i, 0) < Iy
Tt ) [ iF Do, ) = 02y




b) radi 8

c) radi 16
d) radi 32
e) radi 64
f) radi 128

ldeal LPF




Gaussian LPF




Gaussian LPF

b) sigma =5

c) sigma = 10
d) sigma = 20
e) sigma = 30
f) sigma =75

) ih




Butterworth LPF

1

5t v) 1 + | D u.f'];-"',f).,]—’”




b) radi 8

c) radi 16
d) radi 32
e) radi 64
f) radi 128

——




Frequency Domain
Low Pass Filter

ab

FIGURE 4.4

Transfer functions

of (a) a centered

i lowpass filter, and
i (b) the format
used for DFT

i filtering. Note that

these are

frequency domain

filters.




Output

abc

FIGURE 4.5 (a) An image of size 256 » 236 pixels (b) Image lowpass-filtered in the frequency domain without
padding. (c) Image lowpass-filtered in the frequency domain with padding. Compare the upper portion of the
vertical edges in (b) and (c).
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Basic Step in DFT Filtering “+*

. Obtain the padding parameters
. Obtain Fourier Transform with padding
. Generate a filter function H

Multiply the transform with the filter
Obtain the real part of the inverse FFT

. Crop the top left rectangle to the original

size




Frequency Domain Filtering
Basic Step

Frequency domain filtering operations FIEI.IEE 4.8
Basic steps for
Four Filter Inverse filtering in the
ourier | : | : | : :
transform _:} function _::P Fourier — frequency
Hiu,v) ‘ transform domain.

Pre-
processing

{ v

flx.y) glx.y]
Input Filtered
image image

Flu,v) Hiw, vFlu, v

Post-
processing




ab

FIGURE 4.9

(a) A gray-scale
image. (b) Its
Fourier spectrum.



Low Pass Filtering

« Low pass filtering is convolution. It attenuates high frequency
components of an image while leaving low frequency components

intact.

« Low pass filtering can be naturally accomplished in the frequency
domain since the frequency components are explicitly isolated in the

spectrum.

 The DFT coefficients correspond to frequency components of the
source and that their frequency increases with increasing distance
from the center of the shifted spectrum.

— Low pass filtering is then accomplished by zeroing the amplitude
of the high frequency DFT coefficients. Determining which DFT
coefficients should be zeroed amounts to determining how far
the coefficients is from the center of the shifted spectrum.

— Typically, a threshold radius is chosen such that all DFT
coefficients outside of this threshold radius have their magnitude
set to zero while all DFT coefficients falling inside of the

“Sthreshold are unchanged (passed through).




Low Pass Filtering

* Representing low pass filtering as multiplication of DFT
coefficients, we must identify a transfer function (H) that
corresponds to setting high-frequency components to
Zero.

* An “ideal” low pass filter is given in 9.23 where rc is the

cutoff frequency.

— The term ideal as it is used of an ideal low pass filter should not be
taken to mean that this filter is optimal for low pass filtering.

— An ideal low pass filter is ideal in the sense that it has an exact cutoff
above which all terms are exactly zero and below which all terms are
set to unity.

1 Vu?+v2<r
H(u,v) = —. 9.23
(1, ) { 0 otherwise, ( )




(@) H(u,v). (b) h(z,y).

Figure 9.15. Ideal low-pass filter in (a) the frequency domain and (b) the spatial domain.

= M



(a) Filtered magnitude spectrum. (b) Reconstructed spatial domain image.

Figure 9©.14. Ideal low-pass filtering in the frequency domain.




Low Pass Filtering

« Butterworth filter is a low-pass filter with smooth
edges such that there is no (or minimal) ringing in
the spatial domain

— Parameterized on “order” — defines the sharpness of
the filter

|

Hw,v) = [ + [r(u,v)/r:]*

— N is the order of the filter. Larger N represent stronger
cutoffs

— Rc Is the cutoff frequency. Smaller Rc is stronger blur




(c) Third order, n = 3. (d) Fourth order, n = 4.

Figure 9.16. Butterworth filters.




(@) (b)

Figure 9.17. (a) Low pass filtering in the frequency domain using an ideal filter and (b) 5th order




Gaussian low pass filter

» Other well-known frequency domain low pass
filters include the Chebyshev and the
Gaussian transfer functions.

— The Gaussian low pass filter has the very
Interesting property of having the same form in
both the Fourier and spatial domains. In other
words, the DFT of a Gaussian function is itself a

Gaussian function.
— A Gausslan low pass filter introduces no ringing

when applied either in the spatial or frequency
domains. The Gaussian transfer function is given

as

—3[r(wo)/rel” (9.25)




E High-pass and band-pass filtering “+*

* High pass attenuates low frequency
components while leaving high frequency
components intact.

* The technigue for performing high pass
filtering Is identical to that of low-pass
filtering; however, the transfer functions
are inverses to the low pass functions.




High Pass

* |deal — Butterworth - Gaussian

0 Vu?2+v2<r,,

H(u, v) :{ 1 otherwise. (9.26)

1
M) = e o) P 27
H(u,v) =1 — e~z [r(u)/rel” (9.28)




High Pass Filter

ab
cd

FIGURE 4.10

(a) Absolute
value of the
frequency
domain filter
corresponding to
a vertical Sobel
spatial filter.

(b) The same filter
after processing
with function
ifftshift.
Figures (c) and
(d) show the
filters as images.




Result

ab
cd

FIGURE 4.11

{(a) Result of
filtering Fig. 4.9{a)
in the spatial
domain with a
vertical Sobel
mask.

(b) Result
obtained in

the frequency
domain using the
filter shown in
Fig. 4.10(b).
Figures (c) and
(d) are the
absolute values
of (a) and (b),
respectively.




Result2

a b

FIGURE 4.12 Thresholded versions of Figs 4.11{c) and (d). respectively, to show the
principal edges more clearly.




ldeal High-Pass Filter

, \ () if D(u,v) < D
Hilu,v) = - \ -
r(u,v) { 1 if D(u,v) > Dy







= Butterworth High Pass Filter =

|
1+ [D()/!D(u. l')]Q'l

Hp(u,v) =




(b)

a) ori b) horizontal edge c) high pass




Filter Example

ab
cd

FIGURE 4.13
Lowpass
filtering,

(a) Original
image.

(b) Gaussian
lowpass filter
shown as an
image.

(c) Spectrum of
(a). (d) Fltered
image.
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FIGURE 4.15

(a) A plot
obtained using
function mesh.
(b) Axes and grid
removed. (c) A
different
perspective view
obtained using
function view.
(d) Another view
obtained using the
same function.




High-pass Filter

Hyglte, v) =1 — Hyglw, v).

abec
de f

FIGURE 4.17 Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass filters. Bottom row:
Corresponding images. White represents 1 and black is 0.
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Output
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FIGURE 4.18

(a) Original
image. (b) Result
of Gaussian high-
pass filtering,




Band-pass filtering

Gaussian Pyramid (low-pass images)




Band Filters

Low pass filtering is useful for reducing noise but may produce an
Image that is overly blurry.

High pass filtering is useful for sharpening edges but also
accentuates image noise.

Band filtering seeks to retain the benefits of these techniques while
reducing their undesirable properties.

Band filtering isolates the mid-range frequencies from both the low-
range and high-range frequencies.

— A band stop (or notch) filter attenuates mid-level frequencies while
leaving the high and low frequencies unaltered.

— A band pass filter is the inverse of a band stop; leaving the mid-level
frequencies unaltered while attenuating the low and high frequencies in
the image.

A band of frequencies may be specified by giving the center
frequency and the width of the band. The band width determines the
range of frequencies that are included in the band.




Band filters

* A band stop filter is essentially a combination of
a low and high pass filter, which implies that
ideal, Butterworth, and Gaussian band stop
filters can be defined.

« Equation 9.29 is the Butterworth band pass
while Equation 9.30 is the Butterworth band
stop.

1
Iy " .r) — ’ ‘2
H(u,v) 1+ [Qxr(u,v)/(r(u,v)? —r2)]?" (.29)

1

1 + [Q X -?"(-u.? "U)/(-?"(-u., _ft;)Q _ ".”'3)}2” : (930)

H(u,v) =1—




0.5

(a) Butterworth band pass. (b) Butterworth band stop.

Figure 9.18. Normalized Butterworth second-order band filters having a center frequency
of .4 and a band width of .3.




Separabllity

Spatlal 1 Dimensional
Image Row by Row
(2D Ints)

A

1 Dimensional
Inverse Row by Row

Partially

Transformed
(2D Complex)

1 Dimensional
Col by Col

Partially

Transformed
(2D Complex)

A 4

Fully

Transformed

(2D Complex)

1 Dimensional
Inverse Col by Col

A

The Fourier Transform is separable. We can compute the 2d DFT (and
inverse) by repeated applications of the 1D DFT

97




int main(int argc, char** argv){
Mat A = imread("d:/image/cameraman2.tif*, IMREAD_GRAYSCALE);
Size patchSize(100, 100);
Point topleft(A.cols / 2, A.rows / 2);
Rect roi(topleft.x, topleft.y, patchSize.width, patchSize.height);
Mat B = A(roi);
int dft_M = getOptimalDFTSize(A.rows + B.rows - 1);
int dft_N = getOptimalDFTSize(A.cols + B.cols - 1);
Mat dft_A = cv::Mat::zeros(dft_M, dft_N, CV_32F);
Mat dft_B = cv::Mat:.zeros(dft_M, dft N, CV_32F);
Mat dft_A_part = dft_A(Rect(0, 0, A.cols, A.rows));
Mat dft_B_part = dft_B(Rect(0, O, B.cols, B.rows));
A.convertTo(dft_ A part, dft A part.type(), 1, -mean(A)[0)]);
B.convertTo(dft_B_part, dft B_part.type(), 1, -mean(B)[0]);
dft(dft_A, dft_A, 0, A.rows);
dft(dft_B, dft_B, 0, B.rows);
mulSpectrums(dft_A, dft_B, dft_A, 0, true);
idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1);
Mat corr = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
normalize(corr, corr, 0, 1, NORM_MINMAX, corr.type());
pow(corr, 3., corr);
B "= cv::Scalar::all(255);
imshow("Image", A);
imshow("Correlation”, corr);




Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2% images (assuming N=2¥)

level k(=1 pixc]\/——(\

level k-1 ‘IIIIL/

\i

level k-2

1
1
/ :

level O (= onginal image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* In computer graphics, a mip map [Williams, 1983]
* A precursor to wavelet transform
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Laplacian Pyramid

Original
Image

 How can we reconstruct (collapse) this
oyramid into the original image?







Apples and Oranges In bandpass

(b)

(d)

(h)

(g)

Reconstructed

(k)




Applications of Fourier
Transform

* Physics
— Solve linear PDEs (heat conduction, Laplace,
wave propagation)

* Antenna design

— Selsmic arrays, side scan sonar, GPS, SAR
 Signal processing

— 1D: speech analysis, enhancement ...

— 2D: image restoration, enhancement ...




Not Just for EE

 Just like Calculus invented by Newton,
Fourier analysis is another mathematical
tool

« BIOM: fake Iris detection
« CS: anti-aliasing in computer graphics
 CpE: hardware and software systems
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Anti-aliasing in 3D graphic display




This image is too big to
fit on the screen. How
can we reduce Iit?

How to generate a half-
sized version?

S. Seitz



Image sub-sampling

e\
i

Throw away every other row and

column to create a 1/2 size image
=== Called image sub-sampling

S. Seitz



1/8 (4x zoom)

S. Seitz



Gaussian 1/2

Solution: filter the image, then subsample
=t should double for each Y% size reduction. Why? S Seitz
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