School of Engineering and Technology, (SET)


AT74.06 : Pattern Recognition and Image Processing  3(2-3)


Rationale:


The field of image processing has grown considerably with increased applications in diverse areas as manufacturing, biology, space and medical. Continuous improvements in speed of digital computers, algorithmic development and requirement of a high tech environment makes this field a very active area for academic and industrial research.


Catalog Description:


Introduction. Image Acquisition and Preprocessing. Image Analysis Techniques. Image Transforms. Object Recognition and Image Understanding. Advanced Research Areas in Machine Vision.


Pre-requisite(s):


None


Course Outline:


I.             Introduction
1.      Human Vision vs. Machine Vision
2.      Scene Constraints
3.      Optics
 
II.          Image Acquisition and Preprocessing
1.      Sensors for Image Acquisition
2.      Camera Interfaces and Video Standards
3.      Image Sampling and Quantization
4.      Image Preprocessing: Point, Global and Neighbourhood Operations
5.      Image Filters
6.      Edge Detection Techniques
 
III.       Image Analysis Techniques
1.      Image Segmentation
2.      Edge Based and Region Based Segmentation
3.      Edge Linking and Boundary Detection
4.      Matching
5.      Image Feature Extraction
6.      Mathematical Morphology


IV.       Image Transforms
1.      Continuous Image Mathematical Characterization
2.      Discrete Image Mathematical Characterization
3.      Discrete Fourier Transform
4.      Other Image Transforms
 
V.          Object Recognition and Image Understanding
1.      Knowledge representation
2.      Pattern Classification
3.      Neural Nets
 
VI.       Advanced Research Areas in Machine Vision
1.      Geometry for 3D Vision
2.      3D Objects Representation and Modeling Techniques
3.       Machine Vision: Industrial Application
4.      Robot Vision

 

 

Semester: Jan2021

Jan

Feb

March

April

 

Final

 

___________________________________________

CNN_new

New_material

ANN

Tensor_flow

Exam_example

 

Python_CV

Python_CV2

Class12 class13  class14

Yellowball

Salburg   Sudoku

Noisy2

Y_noise

j

Licenseplate_noise

checker

pedestrian

messi5

messi_face

slow

vtest

 

Class1_CV

Class2_CV

Class3_CV

Class4_CV    interface   vdo  subtract

Class5_CV

Class6

Class7

Class8  images

Class9-1

Class9-2

Class10   gaussian bilateral  images

Class11 canny hough

Class12  harish

Class13

 

Midterm_example

 

Final 2016


class1    class1-2  

class2

class3-1_new

class3-2

class3-3

class4

class5

class6

class7

class7-1.5

class7-2

class8

class9

class10  new

class11

 

presentation

images_all
 images

images2

images3

images4

images5

images6

OCR

 

Project


Laboratory Sessions:


Lab 1:   Introduction to Python

Lab 2:   Tensorflow and Keras
Lab 3:   Simple ANN
Lab 4:   CNN1
Lab 5:  CNN2
Lab 6:  Object Detection


Website:


 esl.ait.ac.th


References:

 

 Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed., 2009
G. A. Awcock and R. Thomas: Applied Image Processing, McGraw-Hill, 1996.
 
L.J. Galbiati: Machine Vision and Digital Image Processing Fundamentals, Prentice Hall, NJ, 1990.
R.C
 
A.K. Jain: Fundamentals of Digital Image Processing, Prentice Hall, NJ, 1989.
 
M. Sonka, V.Hlavac, R. Boyle: Image Processing, Analysis, and Machine Vision, PWS Publishing, NJ, 1999.
 
D. Vernon: Machine Vision, Prentice Hall, NJ, 1991.


Journals/Magazines/Websites:


International Journal of Computer Vision
Machine Vision and Application - An International Journal
Pattern Recognition
Sensor Review


Grading System: The Final Grade will be computed according to the following weight

distribution: Mid Exam 20% Final Exam 25%; Lab and Assignments 15% Presentation 5%  Project 35%. Open book exams are given for mid semester and final exam.

Instructor: Dr. Mongkol Ekpanyapong.